Тема: Окружность, круг
Теория
Задачи
  • Внутри равностороннего треугольника со стороной а расположены три равных круга, касающиеся сторон треугольника и взаимно касающиеся друг друга. Найти площадь криволинейного треугольника, образованного дугами взаимно касающихся кругов (вершинами служат точки взаимного касания). Смотреть решение →
  • В правильный треугольник, сторона которого равна а, вписаны три равных круга, касательных друг к другу. Каждый из них касается двух сторон данного треугольника. Определить радиусы этих кругов. Смотреть решение →
  • В равносторонний треугольник со стороной а вписан круг. Затем в этот треугольник вписаны еще три круга, касающиеся первого круга и сторон треугольника, и еще три круга, касающиеся только что вписанных кругов и сторон треугольника, и т. д. Найти сумму площадей всех вписанных кругов ( то есть предел суммы площадей вписанных кругов.) Смотреть решение →
  • К окружности радиуса R проведены 4 касательные, образующие ромб, большая диагональ которого равна 4R. Определить площадь каждой из фигур, ограниченных двумя касательными, проведенными из общей точки, и меньшей дугой окружности, лежащей между точками касания. Смотреть решение →
  • Определить площадь круга, вписанного в прямоугольный треугольник, если высота, опущенная на гипотенузу, делит ее на отрезки, равные 25,6 см и 14,4 см. Смотреть решение →
  • В круге радиуса R по одну сторону от центра проведены три параллельные между собой хорды, соответственно равные сторонам правильных вписанных в круг шестиугольника, четырехугольника и треугольника. Определить отношение площади той части круга, которая заключена между второй и третьей хордами, к площади той части круга, которая заключена между первой и второй хордами. Смотреть решение →
  • Через одну и ту же точку окружности проведены две хорды, равные а и b. Если соединить их концы, то получится треугольник площади S. Определить радиус окружности. Смотреть решение →
  • Две окружности радиусов R и r находятся в положении внешнего касания. К этим окружностям проведена общая внешняя касательная, и в образовавшийся при этом криволинейный треугольник вписана окружность. Найти ее радиус. Смотреть решение →
  • К двум окружностям радиусов R и r, находящимся в положении внешнего касания, проведены их общие внешние касательные. Определить площадь трапеции, ограниченной этими касательными и хордами, соединяющими точки касания.  Смотреть решение →
  • К двум окружностям радиусов R и r, находящимся в положении внешнего касания, проведены их общие касательные - внутренняя и две внешние. Определить длину отрезка внутренней касательной, заключенного между внешними касательными. Смотреть решение →
  • << < 1 2 3 4 5 > >>