Тема: Четырехугольник
Теория
Задачи
  • Если каждую из двух противолежащих сторон четырехугольника разделить на отрезки, пропорциональные прилежащим сторонам, то прямая соединяющая точки деления пересекает продолжения двух других сторон под равными углами Смотреть решение →
  • Внутри треугольника АВС взята точка М и построены параллелограммы АМВМ1, ВМСВ2, СМАМ3. Доказать, что прямые АМ2, ВМ3, СМ1 пересекаются в одной точке. Смотреть решение →
  • Длины диагоналей ромба относятся как 3:4. Во сколько раз площадь ромба больше площади вписанного в него круга? Смотреть решение →
  • Выпуклый четырехугольник ABCD описан около окружности с центром в точке O, при этом AO = OC = 1, BO = OD = 2. Найти периметр четырехугольника ABCD. Смотреть решение →
  • В выпуклом четырехугольнике ABCD точки E, F, H, G являются серединами сторон AB, BC, CD, DA соответственно и O - точка пересечения отрезков EH и FG. Известно, что EH = a, FG = b, \(\angle FOH=\frac{\pi}{3}\) Найти длины диагоналей четырехугольника. Смотреть решение →
  • В выпуклом четырехугольнике ABCD угол A равен 90°, а угол C не превосходит 90°. Из вершин B и D на диагональ AC опущены перпендикуляры BE и DF. Известно, что AE = CF. Доказать, что угол C прямой. Смотреть решение →
  • В ромбе высота, проведенная из вершины тупого угла, делит сторону ромба пополам. Найдите периметр и высоту ромба, если меньшая диагональ его равна 7 Смотреть решение →
  • Длины диагоналей ромба относятся как 3:4. Во сколько раз площадь ромба больше площади вписанного в него круга? Смотреть решение →
  • В равнобедренном треугольнике с основанием, равным 4 см, и высотой, равной 6 см, на боковой стороне, как на диаметре, построена полуокружность. Точки пересечения ее с основанием и боковой стороной соединены прямой. Определить площадь получившегося четырехугольника, вписанного в полукруг.  Смотреть решение →
  • Из вершины тупого угла ромба опущены перпендикуляры на его стороны. Длина каждого перпендикуляра равна а, расстояние между их основаниями равно b. Определить площадь ромба. Смотреть решение →
  • 1 2 > >>