Тема: Четырехугольник
Теория
Задачи
Если каждую из двух противолежащих сторон четырехугольника разделить на отрезки, пропорциональные прилежащим сторонам, то прямая соединяющая точки деления пересекает продолжения двух других сторон под равными углами Смотреть решение →Внутри треугольника АВС взята точка М и построены параллелограммы АМВМ1, ВМСВ2, СМАМ3. Доказать, что прямые АМ2, ВМ3, СМ1 пересекаются в одной точке. Смотреть решение →Длины диагоналей ромба относятся как 3:4. Во сколько раз площадь ромба больше площади вписанного в него круга? Смотреть решение →Выпуклый четырехугольник ABCD описан около окружности с центром в точке O, при этом AO = OC = 1, BO = OD = 2. Найти периметр четырехугольника ABCD. Смотреть решение →В выпуклом четырехугольнике ABCD точки E, F, H, G являются серединами сторон AB, BC, CD, DA соответственно и O - точка пересечения отрезков EH и FG. Известно, что EH = a, FG = b, \(\angle FOH=\frac{\pi}{3}\) Найти длины диагоналей четырехугольника. Смотреть решение →В выпуклом четырехугольнике ABCD угол A равен 90°, а угол C не превосходит 90°. Из вершин B и D на диагональ AC опущены перпендикуляры BE и DF. Известно, что AE = CF. Доказать, что угол C прямой. Смотреть решение →В ромбе высота, проведенная из вершины тупого угла, делит сторону ромба пополам. Найдите периметр и высоту ромба, если меньшая диагональ его равна 7 Смотреть решение →Длины диагоналей ромба относятся как 3:4. Во сколько раз площадь ромба больше площади вписанного в него круга? Смотреть решение →В равнобедренном треугольнике с основанием, равным 4 см, и высотой, равной 6 см, на боковой стороне, как на диаметре, построена полуокружность. Точки пересечения ее с основанием и боковой стороной соединены прямой. Определить площадь получившегося четырехугольника, вписанного в полукруг. Смотреть решение →Из вершины тупого угла ромба опущены перпендикуляры на его стороны. Длина каждого перпендикуляра равна а, расстояние между их основаниями равно b. Определить площадь ромба. Смотреть решение →