Теория
Пусть l - произвольная прямая (рис. 102). Обозначим через p расстояние от начала координат до прямой l, а через φ - угол между осью Ох и нормальным вектором прямой l. Угол будем отсчитывать от оси Оx в направлении, противоположном движению... Читать далее →


Задачи
  • Даны точки М1(2; -1) и М2(4; 5). Написать уравнение прямой, проходящей через точку М1 перпендикулярно вектору \(\overrightarrow{M_{1}M_{2}}\). Смотреть решение →
  • Пусть R - радиус шара, описанного около правильной четырехугольной пирамиды, r- радиус шара, вписанного в эту пирамиду. Доказать, что

    R/r >2 + 1
    Указание. Выразить R/rчерез tg α/2, где α - двугранный угол между основанием и боковой гранью. Смотреть решение →

  • Из точки, взятой на ребре правильной треугольной призмы со стороной основания а, проведены две плоскости. Одна проходит через сторону нижнего основания призмы под углом α к последнему, а другая — через параллельную ей сторону верхнего основания под углом β к нему. Определить объем призмы и сумму площадей полученных сечений. Смотреть решение →
  • Внутри равностороннего треугольника взята произвольная точка, из которой опущены перпендикуляры на все его стороны. Доказать, что сумма этих трех перпендикуляров равна высоте треугольника. Смотреть решение →
  • Правильная пятиугольная пирамида SABCDE пересечена плоскостью, проходящей через вершины А и С основания и середины ребер DS и ES. Найти площадь сечения, если q есть длина стороны основания пирамиды, a b — длина бокового ребра.  Смотреть решение →
  • Дан равнобедренный треугольник с основанием 2а и высотой h. В него вписана окружность, и к ней проведена касательная, параллельная основанию. Найти радиус окружности и длину отрезка касательной, заключенного между сторонами треугольника.  Смотреть решение →
  • Около правильной шестиугольной призмы описан цилиндр. Объём цилиндра равен 16π, высота цилиндра равна 4. Найдите объём призмы. Смотреть решение →
  • Правильный тетраэдр объема V повернут около прямой, соединяющей середины его скрещивающихся ребер, на угол α. Найти объем общей части данного тетраэдра и повернутого (0 < α < π) Смотреть решение →
  • Две правильные n-угольные пирамиды с одинаковыми основаниями, но разными высотами, сложены этими основаниями, и около получившегося многогранника описан шар радиуса R. Найти высоты пирамид, зная, что сторона основания равна а. При каком соотношении между а и R задача разрешима? Смотреть решение →
  • Вычислите площадь боковой поверхности правильной четырехугольной пирамиды, если её ребра равны 5, а радиус окружности, описанной вокруг основания равен 3√2 . Смотреть решение →