Теория
Построим угол и на его сторонах отложим от вершины А равные отрезки АВ = АС (рис. 239).
Через точку В проведём прямую, параллельную АС; через точку С проведём прямую, параллельную АВ. Точку пересечения этих прямых обозначим через D. Мы получили...
Читать далее →
Задачи
Секущая плоскость делит боковые ребра треугольной пирамиды в отношениях (считая от вершины) \( \frac{m_1}{n_1}, \frac{m_2}{n_2}, \frac{m_3}{n_3} \). В каком отношении эта плоскость разделит объем пирамиды? Смотреть решение →
Длины диагоналей ромба относятся как 3:4. Во сколько раз площадь ромба больше площади вписанного в него круга? Смотреть решение →
Треугольник ABC вписан в окружность; через вершину А проведена касательная до пересечения с продолженной стороной ВС в точке D. Из вершин В и С опущены перпендикуляры на касательную, меньший из которых равен 6 см. Определить площадь трапеции, образованной этими перпендикулярами, стороной ВС и отрезком касательной, если ВС = 5 см, AD = 5√6см. Смотреть решение →
На стороне АВ прямоугольника ABCD найти такую точку Е, из которой стороны AD и DC были бы видны под равными углами.
При каком соотношении между сторонами прямоугольника задача разрешима? Смотреть решение →
Найти геометрическое место центров сечений шара плоскостями, проходящими через данную точку С. Разобрать случаи, когда данная точка находится вне шара, на поверхности шара или внутри шара. Смотреть решение →
Доказать, что в любом остроугольном треугольнике ka + kb + kc = r + R, где ka, kb, kc - перпендикуляры, опущенные из центра описанной окружности на соответствующие стороны; r и R - радиусы вписанной и описанной окружностей.
Указание. Можно выразить левую и правую части искомого равенства через стороны и углы треугольника. Смотреть решение →
Сторона основания правильной призмы ABCDA1B1C1D1 равна 12, а боковое ребро \(2\sqrt6\) . Найдите градусную меру угла между плоскостями AB1C и ABC. Смотреть решение →
В выпуклом четырехугольнике ABCD точки E, F, H, G являются серединами сторон AB, BC, CD, DA соответственно и O - точка пересечения отрезков EH и FG. Известно, что EH = a, FG = b, \(\angle FOH=\frac{\pi}{3}\) Найти длины диагоналей четырехугольника. Смотреть решение →
К окружности радиуса R проведены 4 касательные, образующие ромб, большая диагональ которого равна 4R. Определить площадь каждой из фигур, ограниченных двумя касательными, проведенными из общей точки, и меньшей дугой окружности, лежащей между точками касания. Смотреть решение →
В кубе ABCDA1B1C1D1 на АС взята точка M, а на диагонали BD1 куба взята точка N так, что ∠NMC = 60°, ∠MNB = 45°. В каком отношении точки М и N делят отрезки АС и BD1? Смотреть решение →