Теория
Определения. Возьмём несколько углов (черт. 37): ASB, BSC, CSD, которые, примыкая последовательно один к другому, расположены в одной плоскости вокруг общей вершины S.
Повернём плоскость угла ASВ вокруг общей стороны SB так, чтобы эта плоскость составила некоторый двугранный угол с...
Читать далее →
Задачи
В правильный треугольник, сторона которого равна а, вписаны три равных круга, касательных друг к другу. Каждый из них касается двух сторон данного треугольника. Определить радиусы этих кругов. Смотреть решение →
В равнобедренном треугольнике с основанием а и боковой стороной b угол при вершине равен 20°. Доказать, что а3 + b 3 = 3аb2. Смотреть решение →
Даны четыре равных шара радиуса R, из которых каждый касается трех других. Пятый шар касается каждого из данных шаров внешним образом, шестой — внутренним образом. Найти отношение объема шестого шара V6 к объему пятого V5. Смотреть решение →
Основанием пирамиды АВСЕН служит выпуклый четырехугольник АВСЕ, который диагональю BE делится на два равновеликих треугольника. Длина ребра АВ равна 1, длины ребер ВС и СЕ равны. Сумма длин ребер АН и ЕН равна \(\sqrt2\). Объем пирамиды равен 1/6. Найти радиус шара, имеющего наибольший объем среди всех шаров, помещающихся в пирамиде. Смотреть решение →
Доказать, что во всяком треугольнике большей стороне соответствует меньшая биссектриса. Смотреть решение →
В основании прямой призмы ABCA1B1C1 лежит равнобедренный треугольник ABC с углом αпри основании ВС. Боковая поверхность призмы равна S. Найти площадь сечения призмы плоскостью, проходящей через диагональ боковой грани BCC1B1 параллельно высоте AD основания призмы и образующей с плоскостью основания угол β. Смотреть решение →
В треугольнике ABC через точку пересечения биссектрис углов В и С проведена параллельно ВС прямая MN до пересечения в точках М и N соответственно со сторонами АВ и АС. Найти зависимость между отрезками MN, ВМ, CN.
Разобрать случаи:
- обе биссектрисы внутренние;
- обе биссектрисы внешние;
- одна из биссектрис внутренняя, другая внешняя.
Когда М и N совпадут?
Смотреть решение →
Найти третью сторону треугольника, если даны две стороны его а и b и известно, что медианы, соответствующие этим сторонам, пересекаются под прямым углом.
При каких условиях такой треугольник существует? Смотреть решение →
Дан куб ABCDA1B1C1D1; через ребро АА1 проведена плоскость, образующая равные углы с прямыми BC и B1D. Найти эти углы. Смотреть решение →
Определить площадь треугольника, если две стороны соответственно равны 27 см и 29 см, а медиана третьей стороны равна 26 см. Смотреть решение →