Теория
Уравнение называется тригонометрическим, если содержит неизвестное под знаком тригонометрической функции; таковы, например, уравнения: 2sin2x + 3cos x = 0; sin 5x = sin 4x; tg (α+ x) = m tg x (в первом уравнении неизвестное служит аргументом, во втором - входит в... Читать далее →


Задачи
  • В конус вписан шар радиуса r. Найти объем конуса, если известно, что плоскость, касающаяся шара и перпендикулярная к одной из образующих конуса, отстоит от вершины конуса на расстоянии dСмотреть решение →
  • К окружности проведены две касательные. Доказать, что длина перпендикуляра, опущенного из произвольной точки окружности на хорду, соединяющую точки касания, есть среднее пропорциональное между длинами перпендикуляров, опущенных из той же точки на касательные.  Смотреть решение →
  • В шар вписан конус, объем которого равен 1/4 объема шара. Найти объем шара, если высота конуса равна Н. Смотреть решение →
  • В равносторонний треугольник ABC, сторона которого а, вписан другой равносторонний треугольник LMN, вершины которого лежат на сторонах первого треугольника и делят каждую из них в отношении 1:2. Определить площадь треугольника LMN.  Смотреть решение →
  • Сторона основания правильной четырехугольной пирамиды равна а, высота пирамиды h. Через сторону основания пирамиды и середину скрещивающегося с ней бокового ребра проведено сечение. Определить расстояние от вершины пирамиды до плоскости этого сечения.  Смотреть решение →
  • Доказать, что в прямоугольном треугольнике биссектриса прямого угла делит пополам угол между медианой и высотой, опущенными на гипотенузу. Смотреть решение →
  • Основанием пирамиды является равнобедренный треугольник с боковой стороной аи углом αпри основании (α > 45°). Боковые ребра наклонены к плоскости основания под углом β. В этой пирамиде проведена плоскость через ее высоту и вершину одного из углов α. Найти площадь сечения. Смотреть решение →
  • В шаре радиуса R проведен диаметр АВ. Две прямые касаются шара в точках А и В и образуют между собой угол α (α < 90°). На этих прямых взяты точки С и D так, что CD также касается шара и угол между АВ и CD равен φ (φ < 90°). Найти объем тетраэдра ABCD. Смотреть решение →
  • В треугольнике ABC через точку пересечения биссектрис углов В и С проведена параллельно ВС прямая MN до пересечения в точках М и N соответственно со сторонами АВ и АС. Найти зависимость между отрезками MN, ВМ, CN.
    Разобрать случаи:
    1. обе биссектрисы внутренние;
    2. обе биссектрисы внешние;
    3. одна из биссектрис внутренняя, другая внешняя.
    Когда М и N совпадут?  Смотреть решение →

  • Площадь треугольника ABC равна S, сторона АС = b и ∠CAB = α. Найти объем тела, полученного при вращении треугольника ABC около стороны АВ. Смотреть решение →