Теория
1. Определение параллелограмма.
Если пару параллельных прямых пересечём другой парой параллельных прямых, то получим четырёхугольник, у которого противоположные стороны попарно параллельны.
В четырёхугольниках ABDС и ЕFNМ (рис. 224) ВD || АС и AB || СD;
ЕF || МN и ЕМ || FN.
Четырёхугольник,...
Читать далее →
Задачи
Центры четырех кругов радиуса rрасположены в вершинах квадрата со стороной а. Найти площадь S общей части всех четырех кругов, заключенной внутри квадрата. Смотреть решение →
Найти площадь сегмента, если периметр его равен р, а дуга содержит 120°. Смотреть решение →
Самая большая диагональ правильной шестиугольной призмы, имеющая длину d, составляет с боковым ребром призмы угол α. Определить объем призмы. Смотреть решение →
Дан параллелепипед ABCDA1B1C1D1.
Найти сумму векторов \( \overrightarrow{AB}, \overrightarrow{B_{1}C_{1}}, \overrightarrow{CC_{1}}, \overrightarrow{B_{1}A_{1}}, \overrightarrow{B_{1}B} \) Смотреть решение →
В треугольнике АВС АL – биссектриса угла А.Через точку А проводят прямую перпендикулярно АL и из вершины В опускают на эту прямую перпендикуляр ВВ1. Доказать, что периметр треугольника ВВ1С больше периметра треугольника АВС. Смотреть решение →
Около круга радиуса 2 см описана равнобочная трапеция с площадью 20 см2. Найти стороны трапеции. Смотреть решение →
Внутри данной окружности фиксирована точка А, не совпадающая с центром. Через А проведена произвольная хорда и в ее концах - касательные к окружности, пересекающиеся в точке М. Найти геометрическое место точек М. Смотреть решение →
Решить уравнение sin 2х = cos х sin 2x Смотреть решение →
Около правильной треугольной призмы описан цилиндр. Высота цилиндра равна 5, а радиус его основания R удовлетворяет уравнению \(R^2 + R – 6 = 0\). Найдите объём призмы. Смотреть решение →
Дан правильный тетраэдр с ребром a. Сфера касается трех ребер тетраэдра, выходящих из одной вершины, в их концах. Найти площадь части сферической поверхности, расположенной внутри тетраэдра. Смотреть решение →