Теория
1. Проекция отрезка на прямую.Если через какую-нибудь точку, взятую вне прямой, провести прямую, перпендикулярную к ней, то отрезок от данной точки до прямой для краткости называют одним словом перпендикуляр. Отрезок СО - перпендикуляр к прямой АВ. Точка О называется основанием перпендикуляра... Читать далее →


Задачи
  • Доказать, что середины сторон треугольника, основания высот и середины отрезков высот, заключенных между каждой из вершин и точкой пересечения высот, представляют собой девять точек, лежащих на одной окружности. Показать, что центр этой окружности лежит на середине отрезка, соединяющего точку пересечения высот данного треугольника с центром описанного круга, а радиус равен половине радиуса описанного круга.  Смотреть решение →
  • Построение окружности по трём данным точкам. Через три точки, не лежащие на одной прямой, провести окружность. Смотреть решение →
  • Перпендикуляр, опущенный из вершины угла при основании равнобедренного треугольника на противоположную сторону, делит последнюю в отношении m :n. Найти углы треугольника. Смотреть решение →
  • Доказать, что при соединении трех вершин правильного тетраэдра с серединой высоты, опущенной из четвертой вершины, получаются три попарно перпендикулярные прямые. Смотреть решение →
  • Через вершину конуса проведена плоскость под углом α к основанию конуса. Эта плоскость пересекает основание по хорде АВ длины a , стягивающей дугу основания конуса, которой соответствует центральный угол β. Найти объем конуса. Смотреть решение →
  • Объем правильной четырехугольной пирамиды равен V. Угол наклона ее бокового ребра к плоскости основания равен α. Нaйти боковое ребро пирамиды. Смотреть решение →
  • Два шара касаются между собой и граней двугранного угла, величина которого α. Пусть А в В - две точки касания этих шаров с гранями (А и В принадлежат разным шарам и разным граням). В каком отношении отрезок АВ делится точками пересечения с поверхностями этих шаров? Смотреть решение →
  • Через каждое ребро тетраэдра проведена плоскость, параллельная противоположному ребру. Найти отношение объема полученного параллелепипеда к объему тетраэдра. Смотреть решение →
  • В правильной четырехугольной пирамиде через вершину основания проведена плоскость, перпендикулярная к противоположному боковому ребру. Определить площадь сечения, если сторона основания пирамиды равна а, а боковое ребро наклонено к плоскости основания под углом φ (φ > 45° доказать это). Смотреть решение →
  • Пирамида имеет в основании равнобедренный треугольник; боковые стороны этого основания равны а и образуют угол в 120°. Боковое ребро пирамиды, проходящее через вершину тупого угла, перпендикулярно к плоскости основания, а остальные два наклонены к ней под углом α. Определить площадь сечения пирамиды плоскостью, которая проходит через наибольшую сторону основания пирамиды и делит пополам ребро, перпендикулярное к основанию. Смотреть решение →