Теория
Центральная симметрияДве фигуры называются симметричными относительно какой-либо точки О пространства, если каждой точке А одной фигуры соответствует в другой фигуре точка А’, расположенная на прямой ОА по другую сторону от точки О, на расстоянии, равном расстоянию точки А от точки... Читать далее →


Задачи
  • В шар радиуса R вписана прямая треугольная призма. Основанием призмы служит прямоугольный треугольник с острым утлом α, и наибольшая ее боковая грань есть квадрат. Найти объем призмы. Смотреть решение →
  • Основанием пирамиды ABCD является правильный треугольник АВС со стороной 12. Ребро BD перпендикулярно плоскости основания и равно 10√3. Все вершины этой пирамиды лежат на боковой поверхности прямого кругового цилиндра, ось которого пересекает ребро BD и плоскость ABC. Определить радиус цилиндра. Смотреть решение →
  • В прямоугольном параллелепипеде ABCDA1B1C1D1 длины ребер АВ, ВС и ВВ1 равны соответственно 2a, a и a, точка Е - середина ребра ВС. Вершины М и N правильного тетраэдра MNPQ лежат на прямой С1Е, вершины Р и Q - на прямой, проходящей через точку B1 и пересекающей прямую AD в точке F. Найти: а) длину отрезка DF; б) расстояние между серединами отрезков MN и PQ. Смотреть решение →
  • Пирамида имеет в основании квадрат. Из двух противолежащих друг другу ребер одно перпендикулярно к плоскости основания, другое наклонено к ней под углом β и имеет длину l. Определить длины остальных боковых ребер и углы наклона их к плоскости основания пирамиды. Смотреть решение →
  • В основании призмы ABCA1B1C1 лежит равнобедренный треугольник ABC (AB = AC и / BAC = 2α). Вершина А1 верхнего основания проектируется в центр окружности радиуса R, описанной около нижнего основания. Баковое ребро AA1образует со стороной основания АВ угол, равный 2α. Определить объем и боковую поверхность призмы. Смотреть решение →
  • В правильной шестиугольной пирамиде центр описанной сферы лежит на поверхности вписанной. Найти отношения радиусов описанной и вписанной сфер. Смотреть решение →
  • В точке А, находящейся на расстоянии а от центра круглого биллиарда радиуса R, лежит упругий шарик, размерами которого можно пренебречь. В какую точку В борта нужно его направить, чтобы, дважды отразившись от борта, он снова вернулся в точку А?  Смотреть решение →
  • Доказать, что сумма квадратов расстояний какой-нибудь точки окружности до вершин правильного вписанного треугольника есть величина постоянная, не зависящая от положения точки на окружности.  Смотреть решение →
  • Дан параллелепипед ABCDA1B1C1D1.
    Найти сумму векторов \( \overrightarrow{AB}, \overrightarrow{B_{1}C_{1}}, \overrightarrow{CC_{1}}, \overrightarrow{B_{1}A_{1}}, \overrightarrow{B_{1}B} \) Смотреть решение →

  • Определить угол между высотой и образующей конуса, если известно, что объем конуса в 11/3 раза больше объема полушара, вписанного в конус так, что плоская грань полушара лежит в основании конуса, а полушаровая поверхность касается боковой поверхности конуса. Смотреть решение →