Теория
Теорема 1. Около любого правильного многоугольника можно описать окружность. Пусть ABCDEF (рис. 419) - правильный многоугольник; надо доказать, что около него можно описать окружность. Мы знаем, что всегда можно провести окружность через три точки, не лежащие на одной прямой; значит, всегда можно... Читать далее →


Задачи
  • Вычислить объем правильной пирамиды высоты h, зная, что в ее основании лежит многоугольник, сумма внутренних углов которого равна пπ, а отношение боковой поверхности пирамиды к площади основания равно k.  Смотреть решение →
  • Высота треугольника равна 4; она делит основание на две части, относящиеся, как 1 : 8. Найти длину прямой, параллельной высоте и делящей треугольник на равновеликие части.  Смотреть решение →
  • Вычислить объем правильной треугольной пирамиды, зная, что плоский угол при вершине равен α, а радиус окружности, описанной около боковой грани, равен r.  Смотреть решение →
  • На отрезке прямой АВ взята точка С. По одну сторону АВ восставлены к ней перпендикуляры АА1 = ВС и ВВ1 = АС, а по другую СС1 = АВ. На стороне А1В1 треугольника А1В1С1 строится квадрат по ту же сторону от А1В1, что и вершина С1; аналогично строятся квадраты на сторонах В1С1 и С1А1. Доказать, что точки пересечения диагоналей каждого квадрата совпадают соответственно с точками С, А и В. Смотреть решение →
  • По основаниям а и b и боковым сторонам с и d трапеции определить ее диагонали m и n.  Смотреть решение →
  • Доказать, что перпендикуляры к хорде, восставленные в ее концах, пересекают произвольный диаметр в точках, которые равно удалены от центра Смотреть решение →
  • Найти объем треугольной пирамиды, если площади ее граней равны S0, S1, S2, S3, а двугранные углы, прилежащие к грани с площадью S0, равны между собой.  Смотреть решение →
  • Внешняя касательная двух окружностей радиусов 5 см и 2 см в 11/2 раза больше их внутренней касательной. Определить расстояние между центрами этих окружностей.  Смотреть решение →
  • В треугольник вписан круг радиусом 4 см. Одна из сторон треугольника разделена точкой касания на части, равные 6 см и 8 см. Найти длины двух других сторон. Смотреть решение →
  • На стороне АВ прямоугольника ABCD найти такую точку Е, из которой стороны AD и DC были бы видны под равными углами.
    При каком соотношении между сторонами прямоугольника задача разрешима? Смотреть решение →