Теория
Теорема 1. Против большей стороны в треугольнике лежит и больший угол. Пусть в ΔАВС сторона АВ больше стороны ВС. Докажем, что угол С, лежащий против большей стороны АВ, больше угла А, лежащего против меньшей стороны ВС (рис.). Отложим на стороне АВ от... Читать далее →


Задачи
  • Около правильной шестиугольной призмы описан цилиндр. Объём цилиндра равен 10π. Найдите объём цилиндра, вписанного в эту же призму. Смотреть решение →
  • Около правильной треугольной призмы описан цилиндр. Высота цилиндра равна 5, а радиус его основания R удовлетворяет уравнению \(R^2 + R – 6 = 0\). Найдите объём призмы.  Смотреть решение →
  • К окружности радиуса R проведены 4 касательные, образующие ромб, большая диагональ которого равна 4R. Определить площадь каждой из фигур, ограниченных двумя касательными, проведенными из общей точки, и меньшей дугой окружности, лежащей между точками касания. Смотреть решение →
  • В круге радиуса R по одну сторону от центра проведены три параллельные между собой хорды, соответственно равные сторонам правильных вписанных в круг шестиугольника, четырехугольника и треугольника. Определить отношение площади той части круга, которая заключена между второй и третьей хордами, к площади той части круга, которая заключена между первой и второй хордами. Смотреть решение →
  • Даны четыре равных шара радиуса R, из которых каждый касается трех других. Пятый шар касается каждого из данных шаров внешним образом, шестой — внутренним образом. Найти отношение объема шестого шара V6 к объему пятого V5.  Смотреть решение →
  • Основанием прямого параллелепипеда служит ромб с острым углом α. Под каким углом к основанию нужно пересечь этот параллелепипед плоскостью, чтобы в сечении получился квадрат с вершинами на боковых ребрах? Смотреть решение →
  • Доказать, что если между сторонами a, b, с треугольника существует зависимость a2 = b2 + bc , то углы А и В, противолежащие сторонам а и b, удовлетворяют равенству ∠А = 2 ∠В.  Смотреть решение →
  • Через вершину конуса проведена плоскость под углом α к основанию конуса. Эта плоскость пересекает основание по хорде АВ длины a , стягивающей дугу основания конуса, которой соответствует центральный угол β. Найти объем конуса. Смотреть решение →
  • На окружности даны две неподвижные точки А и В и подвижная точка M. На продолжении отрезка AM вне окружности откладывается отрезок MN=MB. Найти геометрическое место точек N. Смотреть решение →
  • Из точки, отстоящей от центра круга на m см, проведены касательные к кругу. Расстояние между точками касания равно a см. Определить радиус круга.  Смотреть решение →