Теория
Теорема. Сумма внутренних углов треугольника равна двум прямым углам.
Возьмём какой-нибудь треугольник AВС (рис. 208). Обозначим его внутренние углы цифрами 1, 2 и 3. Докажем, что
∠1 + ∠2 + ∠3 = 180°.
Проведём через какую-нибудь вершину треугольника, например В, прямую МN параллельно...
Читать далее →
Задачи
Дан конус объема V, образующая которого наклонена к плоскости основания под углом α. На какой высоте надо провести плоскость, перпендикулярную к оси конуса, чтобы сечение конуса разделило пополам его боковую поверхность? Тот же вопрос для полной поверхности. Смотреть решение →
Определить площадь треугольника, если даны а и b— длины его сторон и t — длина биссектрисы угла между этими сторонами. Смотреть решение →
Ребро куба равно а; АВ — его диагональ. Найти радиус сферы, касающейся трех граней, сходящихся в вершине А, и касающейся трех ребер, выходящих из вершины В. Найти также часть поверхности этой сферы, которая лежит вне куба. Смотреть решение →
Точка О - общая вершина двух равных конусов, расположенных по одну сторону от плоскости α так, что только одна образующая каждого конуса (ОА для одного конуса и ОВ для другого) принадлежит плоскости α. Известно, что величина угла между высотами конусов равна β, а величина угла между высотой и образующей конуса равна φ, причем 2φ < β. Найти величину угла между образующей ОА и плоскостью основания другого конуса, которой принадлежит точка В. Смотреть решение →
В шар радиуса R вписана прямая треугольная призма. Основанием призмы служит прямоугольный треугольник с острым утлом α, и наибольшая ее боковая грань есть квадрат. Найти объем призмы. Смотреть решение →
В равносторонний треугольник со стороной а вписан круг. Затем в этот треугольник вписаны еще три круга, касающиеся первого круга и сторон треугольника, и еще три круга, касающиеся только что вписанных кругов и сторон треугольника, и т. д. Найти сумму площадей всех вписанных кругов ( то есть предел суммы площадей вписанных кругов.) Смотреть решение →
В правильной четырехугольной пирамиде через вершину основания проведена плоскость, перпендикулярная к противоположному боковому ребру. Определить площадь сечения, если сторона основания пирамиды равна а, а боковое ребро наклонено к плоскости основания под углом φ (φ > 45° доказать это). Смотреть решение →
Стороны треугольника: а = 13, b = 14, с = 15. Две из них (а и b) служат касательными к кругу, центр которого лежит на третьей стороне. Определить радиус круга. Смотреть решение →
Определить углы, составляемые с основанием боковым ребром и боковой гранью правильной пятиугольной пирамиды, у которой боковые грани — равносторонние треугольники. Смотреть решение →
В основании пирамиды лежит равнобедренный треугольник с углом αпри основании. Каждый двугранный угол при основании равен φ = 90°— α. Боковая поверхность пирамиды равна S. Определить объем пирамиды и полную поверхность ее. Смотреть решение →