Тема: Окружность, круг
Теория
Задачи
На отрезке длины 2а + 2b и его частях длины 2а и 2b как на диаметрах построены полуокружности, лежащие по одну сторону от отрезка. Найти радиус окружности, касающейся трех построенных полуокружностей. Смотреть решение →Круга радиуса r касаются внешним образом три одинаковых окружности, касающиеся, кроме того, попарно между собой. Найти площади трех криволинейных треугольников, образованных указанными окружностями. Смотреть решение →Две окружности радиусов R и r (R > r) имеют внутреннее касание. Найти радиус третьей окружности, касающейся первых двух окружностей и их общего диаметра. Смотреть решение →Три окружности радиусов r, r1 и R касаются попарно внешним образом. Найти длину хорды, отсекаемой третьей окружностью от общей внутренней касательной первых двух окружностей. Смотреть решение →Расстояние между центрами двух пересекающихся кругов радиусов R и r равно d. Найти площадь их общей части. Смотреть решение →Зная хорды двух дуг круга радиуса R, найти хорду дуги, равной сумме этих дуг или их разности. Смотреть решение →