Тема: Окружность, круг
Теория
Задачи
  • К окружности проведены две касательные, которые пересекают в точках А и В прямую, проходящую через центр окружности, и образуют с этой прямой равные углы. Доказать, что любая (подвижная) касательная отсекает на данных (неподвижных) касательных отрезки АС и BD, произведение которых постоянно.  Смотреть решение →
  • В сектор круга радиуса R вписана окружность радиуса r . Хорда сектора равна 2а . Доказать, что

    1/r = 1/R + 1/a

     Смотреть решение →
  • Две окружности касаются друг друга внутренним образом в точке А. Отрезок AB является диаметром большей окружности. Хорда BK большей окружности касается меньшей окружности в точке С. Доказать, что АС является биссектрисой треугольника ABK.  Смотреть решение →
  • Три равных окружности пересекаются в одной точке. Вторая точка пересечения каких-либо двух из этих окружностей и центр третьей определяют проходящую через них прямую. Доказать, что получаемые три прямые пересекаются в одной точке. Смотреть решение →
  • К окружности проведены две касательные. Доказать, что длина перпендикуляра, опущенного из произвольной точки окружности на хорду, соединяющую точки касания, есть среднее пропорциональное между длинами перпендикуляров, опущенных из той же точки на касательные.  Смотреть решение →
  • Доказать, что если в произвольном четырехугольнике ABCD пронести внутренние биссектрисы, то четыре точки пересечения биссектрис углов А и С с биссектрисами углов В и D лежат на окружности.  Смотреть решение →
  • Центры четырех кругов радиуса rрасположены в вершинах квадрата со стороной а. Найти площадь S общей части всех четырех кругов, заключенной внутри квадрата. Смотреть решение →
  • В точке А плоскости Р расположен источник света. Над плоскостью помещено полусферическое зеркало радиуса 1, обращенное внутренней зеркальной поверхностью к плоскости, причем так, что ось симметрии зеркала перпендикулярна к плоскости Р в точке А. Зная, что наименьший угол между лучами, отраженными зеркалом и плоскостью Р, равен 15°, определить расстояние от зеркала до плоскости и радиус освещенного на плоскости Р круга. Смотреть решение →
  • Внутрь острого угла вписываются круги, касающиеся друг друга. Показать, что радиусы этих кругов образуют геометрическую прогрессию. Найти зависимость между знаменателем прогрессии и величиной острого угла. Смотреть решение →
  • Через одну из точек С дуги АВ окружности проведены две произвольные прямые, пересекающие хорду АВ в точках D и Е, а окружность в точках F и G. При каком положении точки С на АВ вокруг четырехугольника DEGF можно описать круг? Смотреть решение →
  • << < 5 6 7 8 > >>