Тема: Призма. Параллелепипед
Теория
Задачи
От правильной четырехугольной призмы плоскостью, проходящей через диагональ нижнего основания и одну из вершин верхнего основания, отсечена пирамида с полной поверхностью S. Найти полную поверхность призмы, если угол при вершине треугольника, получившегося в сечении, равен α. Смотреть решение →В основании прямой призмы лежит прямоугольный треугольник ABC, у которого ∠C= 90°, ∠A =α и катет АС= b. Диагональ боковой грани призмы, проходящей через гипотенузу АВ, образует с боковой гранью, проходящей через катет АС, угол β. Найти объем призмы. Смотреть решение →В правильной треугольной призме угол между диагональю боковой грани и другой боковой гранью равен α. Определить боковую поверхность призмы, зная, что ребро основания равно а. Смотреть решение →В правильной треугольной призме две вершины верхнего основания соединены с серединами противоположных им сторон нижнего основания. Угол между полученными линиями, обращенный отверстием к плоскости основания, равен α. Сторона основания равна b. Определить объем призмы. Смотреть решение →В основании прямой призмы лежит трапеция, вписанная в полукруг радиуса R так, что большее основание ее совпадает с диаметром, а меньшее стягивает дугу, равную 2α. Определить объем призмы, если диагональ грани, проходящей через боковую сторону основания, наклонена к основанию под углом α. Смотреть решение →В основании прямой призмы лежит четырехугольник, в котором два противолежащих угла прямые. Диагональ основания, соединяющая вершины непрямых углов, имеет длину l и делит один из этих углов на части αи β. Площадь сечения, проведенного через другую диагональ основания перпендикулярно к нему, равна S. Найти объем призмы. Смотреть решение →В основании прямой призмы лежит прямоугольный треугольник, у которого сумма катета и гипотенузы равна m и угол между ними равен α. Через другой катет и вершину противоположного трехгранного угла призмы проведена плоскость, образующая с основанием угол β. Определить объемы частей, на которые призма делится плоскостью сечения. Смотреть решение →Основанием прямой призмы служит прямоугольный треугольник с гипотенузой с и острым углом α. Через гипотенузу нижнего основания и вершину прямого угла верхнего основания проведена плоскость, образующая с плоскостью основания угол β. Определить объем треугольной пирамиды, отсеченной от призмы плоскостью. Смотреть решение →Определить объем правильной четырехугольной призмы, если ее диагональ образует с боковой гранью угол α, а сторона основания равна b. Смотреть решение →В основании наклонной призмы лежит прямоугольный треугольник ABC, сумма катетов которого равна m и угол при вершине А равен α. Боковая грань призмы, проходящая через катет АС, наклонена к основанию под углом β. Через гипотенузу AВ и через вершину С1 противоположного трехгранного угла проведена плоскость. Определить объём отсеченной треугольной пирамиды, если известно, что боковые ребра ее равны между собой. Смотреть решение →