Тема: Многогранник, шар
Теория
Задачи
  • Прямой параллелепипед, имеющий в основании ромб, со стороной а и острым углом α, пересечен плоскостью, проходящей через вершину угла α и дающей в сечении ромб с острым углом α/2, Определить площадь этого сечения. Смотреть решение →
  • Основанием прямого параллелепипеда служит ромб с острым углом α. Под каким углом к основанию нужно пересечь этот параллелепипед плоскостью, чтобы в сечении получился квадрат с вершинами на боковых ребрах? Смотреть решение →
  • В прямоугольном параллелепипеде проведена плоскость через диагональ основания и диагональ большей боковой грани, выходящих из одной вершины. Угол между этими диагоналями равен β. Определить боковую поверхность параллелепипеда, площадь сечения и угол наклона сечения к плоскости основания, если известно, что радиус окружности, описанной около основания параллелепипеда, равен R и меньший угол между диагоналями основания равен 2αСмотреть решение →
  • Основанием наклонного параллелепипеда служит ромб ABCD со стороной а и острым углом α. Ребро АА1 равно b и образует с ребрами АВ и AD угол φ. Определить объем параллелепипеда. Смотреть решение →
  • В параллелепипеде все его грани — равные ромбы со сторонами а и острыми углами α. Определить объем этого параллелепипеда. Смотреть решение →
  • В параллелепипеде длины трех ребер, выходящих из общей вершины, равны соответственно а, b и с. Ребра а и b взаимно перпендикулярны, а ребро с образует с каждым из них угол α. Определить объем параллелепипеда, боковую поверхность его и угол между ребром с и плоскостью основания. (При каких значениях угла α задача возможна?) Смотреть решение →
  • Диагональ прямоугольного параллелепипеда, равная d, образует с боковой гранью угол β= 90°— α. Плоскость, проведенная через эту диагональ и боковое ребро, пересекающееся с ней, образует с той же боковой гранью угол α(доказать, что α > 45°). Определить объем параллелепипеда. Смотреть решение →
  • В прямоугольном параллелепипеде точка пересечения диагоналей нижнего основания соединена с серединой одного из боковых ребер прямой, длина которой равна m. Она образует с основанием угол α и с одной из боковых граней угол β = 2α. Приняв другую смежную боковую грань за основание параллелепипеда, найти его боковую поверхность и объем. (Доказать, что α < 30°.) Смотреть решение →
  • Диагональ прямоугольного параллелепипеда равна dи образует с двумя смежными боковыми гранями равные углы α. Определить объем параллелепипеда и угол, который образует с плоскостью основания плоскость, проведенная через концы трех ребер, выходящих из одной вершины. Смотреть решение →
  • Определить объем правильного восьмиугольника (октаэдра) с ребром а и двугранные углы при его ребрах. Смотреть решение →
  • << < 2 3 4 5 6 > >>