Тема: Пирамида
Теория
Задачи
В правильную четырехугольную пирамиду вписан полушар так, что плоская грань его лежит на основании пирамиды, а шаровая поверхность касается боковых граней пирамиды. Найти отношение полной поверхности полушара к полной поверхности пирамиды и объем полушара, если боковые грани наклонены к плоскости основания под углом α и разность между стороной основания и диаметром шара равна m. Смотреть решение →В правильную четырехугольную пирамиду вписан полушар так, что его плоская грань параллельна основанию пирамиды, а шаровая поверхность касается его. Определить полную поверхность пирамиды, если боковые ее грани образуют с основанием угол αи радиус шара равен r. Смотреть решение →Шар радиуса R вписан в пирамиду, в основании которой лежит ромб с острым углом α. Боковые грани пирамиды наклонены к плоскости основания под углом φ. Найти объем пирамиды. Смотреть решение →Основанием пирамиды служит прямоугольник с острым углом α между диагоналями, а боковые ребра образуют с плоскостью основания угол φ. Определить объем этой пирамиды, если радиус шара, описанного около нее, равен R. Смотреть решение →Из середины высоты правильной четырехугольной пирамиды опущен перпендикуляр на боковое ребро, равный h, и перпендикуляр на боковую грань, равный b. Найти объем пирамиды. Смотреть решение →Секущая плоскость делит боковые ребра треугольной пирамиды в отношениях (считая от вершины) \( \frac{m_1}{n_1}, \frac{m_2}{n_2}, \frac{m_3}{n_3} \). В каком отношении эта плоскость разделит объем пирамиды? Смотреть решение →В правильной четырехугольной усеченной пирамиде стороны верхнего и нижнего оснований равны соответственно а и 3а и боковые грани наклонены к плоскости нижнего основания под углом α. Через сторону верхнего основания проведена плоскость параллельно противоположной боковой грани. Определить объем четырехугольной призмы, отсеченной от данной усеченной пирамиды, и полную поверхность остальной части ее. Смотреть решение →Пирамида имеет в основании прямоугольный треугольник с катетом а. Одно из боковых ребер пирамиды перпендикулярно к плоскости основания, а другие два наклонены к ней под одним и тем же углом α. Плоскость, перпендикулярная к основанию, дает в сечении с пирамидой квадрат. Определить площадь этого квадрата. Смотреть решение →Ребро тетраэдра равно b. Через середину одного из ребер проведена плоскость параллельно двум непересекающимся ребрам. Определить площадь полученного сечения. Смотреть решение →В правильной четырехугольной пирамиде через вершину основания проведена плоскость, перпендикулярная к противоположному боковому ребру. Определить площадь сечения, если сторона основания пирамиды равна а, а боковое ребро наклонено к плоскости основания под углом φ (φ > 45° доказать это). Смотреть решение →