Тема: Пирамида
Теория
Задачи
  • Из середины высоты правильной четырехугольной пирамиды опущен перпендикуляр на боковое ребро, равный h, и перпендикуляр на боковую грань, равный b. Найти объем пирамиды. Смотреть решение →
  • Секущая плоскость делит боковые ребра треугольной пирамиды в отношениях (считая от вершины) \( \frac{m_1}{n_1}, \frac{m_2}{n_2}, \frac{m_3}{n_3} \). В каком отношении эта плоскость разделит объем пирамиды? Смотреть решение →
  • В правильной четырехугольной усеченной пирамиде стороны верхнего и нижнего оснований равны соответственно а и 3а и боковые грани наклонены к плоскости нижнего основания под углом α. Через сторону верхнего основания проведена плоскость параллельно противоположной боковой грани. Определить объем четырехугольной призмы, отсеченной от данной усеченной пирамиды, и полную поверхность остальной части ее. Смотреть решение →
  • Пирамида имеет в основании прямоугольный треугольник с катетом а. Одно из боковых ребер пирамиды перпендикулярно к плоскости основания, а другие два наклонены к ней под одним и тем же углом α. Плоскость, перпендикулярная к основанию, дает в сечении с пирамидой квадрат. Определить площадь этого квадрата. Смотреть решение →
  • Ребро тетраэдра равно b. Через середину одного из ребер проведена плоскость параллельно двум непересекающимся ребрам. Определить площадь полученного сечения. Смотреть решение →
  • В правильной четырехугольной пирамиде через вершину основания проведена плоскость, перпендикулярная к противоположному боковому ребру. Определить площадь сечения, если сторона основания пирамиды равна а, а боковое ребро наклонено к плоскости основания под углом φ (φ > 45° доказать это). Смотреть решение →
  • В правильной четырехугольной пирамиде сторона основания равна а, а двугранный угол при основании равен α. Через две противоположные стороны основания пирамиды проведены две плоскости, пересекающиеся взаимно под прямым углом. Определить длину линии их пересечения, заключенную внутри пирамиды, если известно, что она пересекает ось пирамиды. Смотреть решение →
  • В правильной четырехугольной пирамиде двугранный угол при основании равен α. Через его ребро проведена плоскость, составляющая с основанием угол β. Сторона основания равна а. Определить площадь сечения. Смотреть решение →
  • Основанием пирамиды является прямоугольный треугольник с катетами 6 и 8. Вершина пирамиды удалена от плоскости ее основания на расстояние, равное 24, и проектируется на эту плоскость в точку, лежащую внутри основания. Найти ребро куба, четыре вершины которого лежат в плоскости основания данной пирамиды, а ребра, соединяющие эти вершины, параллельны соответствующим катетам треугольника, лежащего в основании пирамиды. Четыре другие вершины куба лежат на боковых гранях данной пирамиды. Смотреть решение →
  • В правильную четырехугольную пирамиду вписан куб так, что вершины его лежат на апофемах пирамиды. Найти отношение объема пирамиды к объему куба, зная, что угол между высотой пирамиды и ее боковой гранью равен αСмотреть решение →
  • << < 3 4 5 6 7 > >>