Тема: Пирамида
Теория
Задачи
Плоскость, пересекающая поверхность треугольной пирамиды, делит медиану граней, выходящие из одной вершины, в отношениях 2:1, 1:2, 4:1 соответственно (считая от вершины). В каком отношении эта плоскость делит объем пирамиды? Смотреть решение →В основании четырехугольной пирамиды SABCD лежит квадрат ABCD со стороной a. Оба угла между противоположными боковыми гранями прямые. Двугранный угол при ребре SA равен α. Найти объем пирамиды. Смотреть решение →Правильный тетраэдр объема V повернут около прямой, соединяющей середины его скрещивающихся ребер, на угол α. Найти объем общей части данного тетраэдра и повернутого (0 < α < π) Смотреть решение →Внутри правильной треугольной пирамиды расположена вершина трехгранного угла, все плоские углы которого прямые, а биссектрисы плоских углов проходят через вершины основания. В каком отношении поверхность этого угла делит объем пирамиды, если каждая грань пирамиды разделена ею на две равновеликие части? Смотреть решение →Дана треугольная пирамида SABC. Шар радиуса R касается плоскости АВС в точке С и ребра SA в точке S. Прямая BS вторично пересекает шар в точке, диаметрально противоположной точке С. Найти объем пирамиды SABC, если |ВС| = a, |SA| = b. Смотреть решение →Дан правильный тетраэдр с ребром a. Сфера касается трех ребер тетраэдра, выходящих из одной вершины, в их концах. Найти площадь части сферической поверхности, расположенной внутри тетраэдра. Смотреть решение →В треугольной пирамиде SABC с основанием АВС и равными боковыми ребрами сумма двугранных углов с ребрами SA и SC равна 180°. Известно, что |АВ| = a, |ВС| = b. Найти длину бокового ребра. Смотреть решение →В основании пирамиды лежит прямоугольник с острым углом между диагоналями а (а < 60°), боковые ребра ее равны между собой, а высота h. Внутри этой пирамиды расположена треугольная пирамида, вершина которой совпадает с вершиной первой пирамиды, а вершины основания лежат по одной на трех сторонах прямоугольника. Найти объем четырехугольной пирамиды, если все ребра треугольной пирамиды равны между собой, а боковые грани равновелики. Смотреть решение →В пирамиде SABC прямая, пересекающая ребра АС и BS и перпендикулярная к ним, проходит через середину ребра BS. Грань ASB равновелика грани BSC, а площадь грани ASC в два раза больше площади грани BSC. Внутри пирамиды есть точка М, сумма расстояний от которой до вершин В и S равна сумме расстояний до всех граней пирамиды. Найти расстояние от точки М до вершины В, если |АС| = √6, |ВS| = 1. Смотреть решение →В пирамиде SABC произведения длин ребер каждой из четырех граней равны одному и тому же числу. Длина высоты пирамиды, опущенной из S на грань АВС, равна \(2\sqrt{\frac{102}{55}}\), а величина угла CAB равна \(arccos(\frac{1}{6}\sqrt{\frac{17}{2}})\). Найти объем пирамиды SABC, если |SA|2 + |SB|2 - 5|SC|2 = 60 Смотреть решение →