Тема: Пирамида
Теория
Задачи
  • Все ребра треугольной пирамиды ABCD касаются некоторого шара. Три отрезка, соединяющие середины скрещивающихся ребер, равны. Угол АВС равен 100°. Найти отношение высот пирамиды, опущенных из вершин А и В. Смотреть решение →
  • В правильную треугольную пирамиду SABC с вершиной S и основанием АВС вписан шар радиуса 2; высота пирамиды SK равна 6. Доказать, что существует единственная плоскость, пересекающая ребра основания АВ и ВС в некоторых точках М и N таких, что |MN| = 7, касающаяся шара в точке, удаленной на равные расстояния от точек М и N, и пересекающая продолжение высоты пирамиды SK за точку К в некоторой точке D. Найти длину отрезка SD. Смотреть решение →
  • Объем тетраэдра ABCD равен 5. Через середины ребер AD и BC проведена плоскость, пересекающая ребро CD в точке M. При этом отношение длины отрезка DM к длине отрезка СМ равно 2/3. Вычислить площадь сечения тетраэдра указанной плоскостью, если расстояние от нее до вершины А равно 1. Смотреть решение →
  • Точка D - середина ребра А1С1 правильной треугольной призмы АВСА1В1С1 Правильная треугольная пирамида SMNP расположена так, что плоскость ее основания MNP совпадает с плоскостью АВС, вершина М лежит на продолжении АС, причем |СМ| = 1/2|АС|, ребро SN проходит через точку D, а ребро SP пересекает отрезок ВВ1. В каком отношении отрезок ВВ1 делится точкой пересечения? Смотреть решение →
  • В правильной четырехугольной усеченной пирамиде с боковыми ребрами AA1, ВВ1, СС1, DD1 сторона верхнего основания A1B1C1D1 равна 1, а сторона нижнего основания равна 7. Плоскость, проходящая через ребро В1С1 перпендикулярно к плоскости AD1C, делит пирамиду на две части равного объема. Найти объем пирамиды. Смотреть решение →
  • Дана правильная треугольная пирамида SABC (S - ее вершина). Ребро SC этой пирамиды совпадает с боковым ребром правильной треугольной призмы A1B1CA2B2S (А1А2, В1В2 и CS - боковые ребра, а А1В1С- одно из оснований). Вершины А1 и В1 лежат в плоскости грани SAB пирамиды. Какую долю от объема всей пирамиды составляет объем части пирамиды, лежащей внутри призмы, если отношение длины бокового ребра пирамиды к стороне ее основания равно \(\frac{2}{\sqrtЗ}\)? Смотреть решение →
  • В правильном тетраэдре точки М и N являются серединами противоположных ребер. Проекция тетраэдра на плоскость, параллельную MN, представляет собой четырехугольник площади S, один из углов которого равен 60°. Найти площадь поверхности тетраэдра. Смотреть решение →
  • В правильной четырехугольной пирамиде SABCD (ABCD - основание) сторона основания равна a, а угол между боковым ребром и плоскостью основания равен α. Плоскость, параллельная диагонали основания АС и боковому ребру BS, пересекает пирамиду так, что в сечение можно вписать окружность. Определить радиус этой окружности. Смотреть решение →
  • ABCD - правильный тетраэдр с ребром a. Пусть М - центр грани ADC, N - середина ребра ВС. Найти радиус шара, вписанного в трехгранный угол А и касающегося прямой MN. Смотреть решение →
  • В тетраэдре три двугранных угла прямые. Один из отрезков, соединяющих середины противоположных ребер тетраэдра, равен a, а другой b (b > a). Найти длину наибольшего ребра тетраэдра. Смотреть решение →
  • << < 1 2 3 4 > >>