Тема: Пирамида
Теория
Задачи
В правильную четырехугольную пирамиду вписан куб так, что его четыре вершины находятся на боковых ребрах пирамиды, а остальные четыре — в плоскости ее основания. Определить ребро куба, если высота пирамиды равна H, а боковое ребро равно l. Смотреть решение →Стороны оснований правильной четырехугольной усеченной пирамиды равны а и а√3 , боковая грань наклонена к плоскости основания под углом γ. Определить объем и полную поверхность пирамиды. Смотреть решение →Высота правильной четырехугольной усеченной пирамиды равна H, боковое ребро и диагональ пирамиды наклонены к плоскости ее основания под углами αи β. Найти ее боковую поверхность. Смотреть решение →Боковое ребро правильной четырехугольной усеченной пирамиды равно l, оно наклонено к плоскости основания под углом β. Диагональ пирамиды перпендикулярна к боковому ребру ее. Определить объем пирамиды. Смотреть решение →В правильной усеченной четырехугольной пирамиде даны: диагональ d, двугранный угол αпри нижнем основании и высота H. Найти объем усеченной пирамиды. Смотреть решение →Определить объем правильной четырехугольной пирамиды, боковое ребро которой равно l , а двугранный угол между двумя смежными боковыми гранями равен β. Смотреть решение →В основании четырехугольной пирамиды лежит ромб, сторона которого равна а и острый угол равен α. Плоскости, проходящие через вершину пирамиды и диагонали основания, наклонены к плоскости основания под углами φи ψ. Определить объем пирамиды, если ее высота пересекает сторону основания. Смотреть решение →В основании пирамиды ромб со стороной а. Две соседние грани составляют с плоскостью основания угол α, третья боковая грань составляет с плоскостью основания угол β(доказать, что и четвертая боковая грань наклонена к основанию под тем же углом). Высота пирамиды Н. Найти объем пирамиды и полную поверхность ее. Смотреть решение →Основанием пирамиды служит прямоугольный треугольник, а высота ее проходит через точку пересечения гипотенузы с биссектрисой прямого угла основания. Боковое ребро, проходящее через вершину прямого угла, наклонено к плоскости основания под углом α. Определить объем пирамиды и углы наклона боковых граней к плоскости основания, если биссектриса прямого угла основания равна m и образует с гипотенузой угол 45° + α. Смотреть решение →В основании пирамиды лежит прямоугольный треугольник, у которого один острый угол равен αи радиус вписанного круга равен r. Каждая из боковых граней образует с основанием угол α. Определить объем, боковую и полную поверхность пирамиды. Смотреть решение →