Тема: Многогранник, шар
Теория
Задачи
  • Пусть R - радиус шара, описанного около правильной четырехугольной пирамиды, r- радиус шара, вписанного в эту пирамиду. Доказать, что

    R/r >2 + 1
    Указание. Выразить R/rчерез tg α/2, где α - двугранный угол между основанием и боковой гранью. Смотреть решение →

  • Четыре шара, центры которых не лежат в одной плоскости, касаются попарно друг друга. Каждые два из них определяют плоскость, перпендикулярную к их линии центров и касающуюся обоих шаров. Доказать, что возникающие таким образом шесть плоскостей имеют общую точку. Смотреть решение →
  • Какому условию должны удовлетворять радиусы трех шаров, попарно касающихся друг друга, для того, чтобы к этим шарам можно было провести общую касательную плоскость? Смотреть решение →
  • Доказать, что две плоскости, проведенные через концы двух троек ребер параллелепипеда, исходящих из концов диагонали параллелепипеда, рассекают эту диагональ на три равные части. Смотреть решение →
  • Показать, что если плоскость, проведенная через концы трех ребер параллелепипеда, исходящих из одной вершины, отсекает от параллелепипеда правильный тетраэдр, то параллелепипед можно пересечь плоскостью так, чтобы в сечении получился правильный шестиугольник. Смотреть решение →
  • Доказать, что всякая плоскость, проходящая через середины двух противоположных ребер тетраэдра, делит этот тетраэдр на две равновеликие части. Смотреть решение →
  • Стороны основания прямоугольного параллелепипеда а и b. Диагональ параллелепипеда составляет с плоскостью основания угол α. Определить боковую поверхность параллелепипеда. Смотреть решение →
  • Найти высоту тетраэдра, объем которого равен V. Под тетраэдром здесь понимается правильный четырехгранник (иногда тетраэдром называется произвольная треугольная пирамида)Смотреть решение →
  • В прямом параллелепипеде стороны основания равны а и b и острый угол — α. Большая диагональ основания равна меньшей диагонали параллелепипеда. Найти объем параллелепипеда. Смотреть решение →
  • Диагонали прямого параллелепипеда равны 9 см и √33 см. Периметр его основания равен 18 см. Боковое ребро равно 4 см. Определить полную поверхность и объем параллелепипеда. Смотреть решение →
  • << < 1 2 3 4 5 > >>