Тема: Пирамида
Теория
Задачи
  • В правильной треугольной пирамиде со стороной основания, равной а, углы между ребрами при ее вершине равны между собой и каждый равен α(α <90°). Определить углы между боковыми гранями пирамиды и площадь сечения, проведенного через сторону основания перпендикулярно к противолежащему боковому ребру. Смотреть решение →
  • В основании пирамиды лежит прямоугольник. Одна из боковых граней имеет вид равнобедренного треугольника и перпендикулярна к основанию; в другой грани, противоположной первой, боковые ребра, равные b, образуют между собой угол 2α и наклонены к первой грани под углом α. Определить объем пирамиды и угол между указанными двумя гранями. Смотреть решение →
  • В основании пирамиды лежит прямоугольник. Одна из боковых граней наклонена к основанию под углом β= 90°— α, а противоположная ей грань перпендикулярна к основанию и имеет вид прямоугольного треугольника с прямым углом при вершине пирамиды и острым углом, равным α. Сумма высот этих двух граней равна m. Определить объем пирамиды и сумму площадей двух других боковых граней. Смотреть решение →
  • Основанием пирамиды служит квадрат. Две противоположные грани — равнобедренные треугольники, одна из них образует с основанием внутренний угол β, а другая — внешний острый угол α. Высота пирамиды равна Н. Найти объем пирамиды и углы, образованные двумя другими боковыми гранями с плоскостью основания. Смотреть решение →
  • Основанием пирамиды является равнобедренный треугольник с боковой стороной аи углом αпри основании (α > 45°). Боковые ребра наклонены к плоскости основания под углом β. В этой пирамиде проведена плоскость через ее высоту и вершину одного из углов α. Найти площадь сечения. Смотреть решение →
  • В основании пирамиды лежит равнобедренный треугольник с углом αпри основании. Каждый двугранный угол при основании равен φ = 90°— α. Боковая поверхность пирамиды равна S. Определить объем пирамиды и полную поверхность ее. Смотреть решение →
  • Определить объем правильной усеченной четырехугольной пирамиды, если сторона большего основания равна а, сторона меньшего основания равна b, а острый угол боковой грани равен αСмотреть решение →
  • Тетраэдр, ребро которого равно а, пересечен плоскостью, содержащей одно из ребер тетраэдра, и делящей противоположное ребро в отношении 2 : 1. Определить площадь сечения и углы этого сечения. (Под тетраэдром здесь понимается правильный четырехгранник (иногда тетраэдром называется произвольная треугольная пирамида)Смотреть решение →
  • Через вершину правильной треугольной пирамиды и середины двух сторон основания проведена плоскость. Определить площадь сечения и объемы частей данной пирамиды, на которые она разделена сечением, зная сторону а ее основания, и угол α, образованный сечением с основанием. Смотреть решение →
  • Через вершину правильной четырехугольной пирамиды под углом φк основанию пирамиды проведена плоскость параллельно стороне основания. Сторона основания пирамиды равна а, а плоский угол при вершине пирамиды равен α. Найти площадь сечения пирамиды. Смотреть решение →
  • << < 7 8 9 10 11 > >>