Тема: Многогранник, шар
Теория
Задачи
  • В конус вписан шар, причем отношение их объемов равно k. Найти отношение объемов шаровых сегментов, отсекаемых от шара плоскостью, проходящей через линию касания шара с конусом. Смотреть решение →
  • В сферу S радиуса R вписаны восемь сфер меньшего радиуса, каждая из которых касается двух соседних, а все вместе касаются сферы S по окружности большого круга. Затем в пространство между сферами вписана еще одна сфера S1, которая касается всех восьми сфер меньшего радиуса и сферы S. Найти радиус ρ этой последней сферы.  Смотреть решение →
  • В сферу S радиуса R вписано восемь равных сфер, каждая из которых касается трех соседних сфер и сферы S. Найти радиус вписанных сфер, зная, что их центры лежат в вершинах некоторого куба.  Смотреть решение →
  • В шар вписаны два одинаковых конуса, оси которых совпадают, а вершины находятся в противоположных концах диаметра шара. Найти отношение объема общей части этих двух конусов к объему шара, зная, что отношение высоты конуса h к радиусу шара R равно kСмотреть решение →
  • Площади параллельных сечений шара, расположенных по одну сторону от его центра, равны S1 и S2, а расстояние между этими сечениями равно d. Найти площадь сечения, параллельного данным и делящего пополам расстояние между ними.  Смотреть решение →
  • Даны четыре равных шара радиуса R, из которых каждый касается трех других. Пятый шар касается каждого из данных шаров внешним образом, шестой — внутренним образом. Найти отношение объема шестого шара V6 к объему пятого V5.  Смотреть решение →
  • На плоскости лежат три равных шара радиуса R, попарно касающихся друг друга. Четвертый шар касается плоскости и каждого из первых трех шаров. Найти радиус четвертого шара.  Смотреть решение →
  • На плоскости лежат четыре равных шара радиуса R, причем три из них касаются попарно друг друга, а четвертый касается двух из этих трех. На эти шары сверху положены два равных шара меньшего радиуса, касающихся друг друга, причем каждый из них касается трех больших шаров. Найти отношение радиусов большого и малого шаров.  Смотреть решение →
  • Куб пересекается плоскостью, проходящей через одну из его диагоналей. Как должна быть проведена эта плоскость, чтобы площадь сечения получилась наименьшей? Смотреть решение →
  • Доказать, что при соединении трех вершин правильного тетраэдра с серединой высоты, опущенной из четвертой вершины, получаются три попарно перпендикулярные прямые. Смотреть решение →
  • << < 1 2 3 4 > >>