Тема: Пирамида
Теория
Задачи
Боковая поверхность правильной четырехугольной пирамиды содержит S см2, высота пирамиды Н см. Найти сторону основания пирамиды. Смотреть решение →Объем правильной четырехугольной пирамиды равен V. Угол наклона ее бокового ребра к плоскости основания равен α. Нaйти боковое ребро пирамиды. Смотреть решение →Боковое ребро правильной четырехугольной пирамиды, длиной m, наклонено к плоскости основания под углом α. Найти объем пирамиды. Смотреть решение →Доказать, что если в треугольной пирамиде все грани равновелики, то они равны. Смотреть решение →На двух параллельных плоскостях расположены отрезки АВ и CD. Концы этих отрезков являются вершинами некоторой треугольной пирамиды. Доказать, что объем пирамиды сохраняется, если отрезки перемещать в этих плоскостях параллельно самим себе. Смотреть решение →Доказать, что если все двугранные углы некоторой треугольной пирамиды равны, то все ребра этой пирамиды также равны. Смотреть решение →Доказать, что если точка перемещается в плоскости основания правильной пирамиды, оставаясь внутри этого основания, то сумма расстояний этой точки от боковых граней постоянна. Смотреть решение →Доказать, что если в треугольной пирамиде сумма длин любой пары противоположных ребер одна и та же, то вершины этой пирамиды являются центрами четырех шаров, попарно касающихся друг друга. Смотреть решение →Одна из двух треугольных пирамид с общим основанием расположена внутри другой. Доказать, что сумма плоских углов при вершине внутренней пирамиды больше, чем сумма плоских углов при вершине внешней. Смотреть решение →Показать, что площадь любого треугольного сечения произвольной треугольной пирамиды не превосходит площади хотя бы одной из ее граней. Смотреть решение →