Определение подобных треугольников

Рассмотрим два прямоугольных треугольника с острыми углами в 60° и 30° (рис. 364).

Стороны второго треугольника по сравнению с первым уменьшены в два раза:

\(\frac{AB}{A’B’}\) = 2; \(\frac{AC}{A’C’}\) = 2; \(\frac{BC}{B’C’}\) = 2.

У этих треугольников углы попарно равны. Стороны, лежащие против равных углов, пропорциональны:

\(\frac{AB}{A’B’}\) = \(\frac{AC}{A’C’} = \frac{BC}{B’C’}\) = 2.

Такие треугольники называют подобными. Стороны, лежащие против равных углов, называются сходственными.

Таким образом, подобными называются треугольники, у которых yглы попарно равны, а сходственные стороны пропорциональны.


Подобие треугольников записывается так: \(\Delta\)ABС \(\sim\) \(\Delta\)А’В’С’.

Отношение сходственных сторон подобных фигур называется коэффициентом подобия. В данном случае коэффициентом подобия треугольников АBС и А’В’С’ будет число 2.

Если же взять отношения A’B’/AB = A’C’/AC = B’C’/BC , то коэффициент подобия будет равен 1/2.



Свойство прямой, параллельной какой-либо стороне треугольника.

Проведём в треугольнике АBС прямую DЕ параллельно стороне АС (рис. 365).

Получим треугольник DВЕ. Докажем, что \(\Delta\)ABС \(\sim\) \(\Delta\)DВЕ.

Вследствие параллельности сторон DЕ и АС ∠1 = ∠2 и ∠3 = ∠4.
Угол В является общим для этих треугольников. Следовательно, углы этих треугольников попарно равны.

Так как DЕ || АС, то \(\frac{AB}{DB} = \frac{BC}{BE}\).

Проведём через точку Е прямую, параллельную стороне AB (рис. 366).

Получим: \(\frac{BC}{BE} = \frac{AC}{AK}\), но АК = DЕ.

Поэтому

\(\frac{BC}{BE} = \frac{AC}{DE}\)

Сопоставляя полученную пропорцию с пропорцией \(\frac{AB}{DB} = \frac{BC}{BE}\) получим:

\(\frac{AB}{DB} = \frac{BC}{BE} = \frac{AC}{DE}\), т.е.

сходственные стороны треугольников AВС и DВЕ пропорциональны.
Раньше было доказано, что углы этих треугольников попарно равны.

Значит, \(\Delta\)ABС \(\sim\) \(\Delta\)DВЕ.

Следовательно, прямая, проведённая параллельно какой-либо стороне треугольника, отсекает от него треугольник, подобный данному.