Тема: Пирамида
Теория
Задачи
  • В правильной шестиугольной пирамиде с плоским углом при вершине, равным α, проведено сечение через наибольшую диагональ основания под углом β к нему. Найти отношение площади сечения к площади основания.  Смотреть решение →
  • Вычислить объем правильной пирамиды высоты h, зная, что в ее основании лежит многоугольник, сумма внутренних углов которого равна пπ, а отношение боковой поверхности пирамиды к площади основания равно k.  Смотреть решение →
  • Рассматриваем куб с ребром а. Через концы каждой тройки ребер, выходящих из общей вершины, проведена плоскость. Найти объем тела, ограниченного этими плоскостями.  Смотреть решение →
  • В правильной шестиугольной пирамиде через центр основания проведено сечение параллельно боковой грани. Найти отношение площади сечения к площади боковой грани.  Смотреть решение →
  • Через каждое ребро тетраэдра проведена плоскость, параллельная противоположному ребру. Найти отношение объема полученного параллелепипеда к объему тетраэдра. Смотреть решение →
  • На боковых гранях правильной четырехугольной пирамиды построены, как на основаниях, правильные тетраэдры. Найти расстояние между наружными вершинами двух смежных тетраэдров, если сторона основания пирамиды равна а.  Смотреть решение →
  • Сторона основания правильной четырехугольной пирамиды равна а, высота пирамиды h. Через сторону основания пирамиды и середину скрещивающегося с ней бокового ребра проведено сечение. Определить расстояние от вершины пирамиды до плоскости этого сечения.  Смотреть решение →
  • В правильном тетраэдре SABC с ребром основания а проведены три плоскости, каждая из которых проходит через одну из вершин основания тетраэдра ABC и середины двух боковых ребер. Найти объем части тетраэдра, расположенной над всеми секущими плоскостями.  Смотреть решение →
  • Основанием пирамиды SABCD является ромб с диагоналями AC = a, BD = b. Боковое ребро SA перпендикулярно плоскости основания и равно q. Через точку А и середину К ребра SC проведена плоскость, параллельная диагонали основания BD. Определить площадь сечения.  Смотреть решение →
  • Треугольная пирамида рассечена плоскостью на два многогранника. Найти отношение объемов этих многогранников, если известно, что секущая плоскость делит три боковые ребра, сходящиеся в одной вершине пирамиды, в отношении 1:2, 1:2 и 2:1, считая от вершины. Смотреть решение →
  • << < 1 2 3 4 > >>