Признаки параллельности прямых

1. Первый признак параллельности.

Если при пересечении двух прямых третьей внутренние накрест лежащие углы равны, то эти прямые параллельны.

Пусть прямые АВ и СD пересечены прямой ЕF и ∠1 = ∠2. Возьмём точку О - середину отрезка КL секущей ЕF (рис.).

Опустим из точки О перпендикуляр ОМ на прямую АВ и продолжим его до пересечения с прямой СD, АВ ⊥ МN. Докажем, что и СD ⊥ МN.

Для этого рассмотрим два треугольника: МОЕ и NОК. Эти треугольники равны между собой. В самом деле: ∠1 = ∠2 по условию теоремы; ОK = ОL - по построению;

∠МОL = ∠NОК, как вертикальные углы. Таким образом, сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника; следовательно, ΔМОL = ΔNОК, а отсюда и ∠LМО = ∠КNО,
но ∠LМО прямой, значит, и ∠КNО тоже прямой. Таким образом, прямые АВ и СD перпендикулярны к одной и той же прямой МN, следовательно, они параллельны, что и требовалось доказать.

Примечание. Пересечение прямых МО и СD может быть установлено путём поворота треугольника МОL вокруг точки О на 180°.

2. Второй признак параллельности.

Посмотрим, будут ли параллельны прямые АВ и СD, если при пересечении их третьей прямой ЕF равны соответственные углы.

Пусть какие-нибудь соответственные углы равны, например ∠ 3 = ∠2 (рис.);

∠3 = ∠1, как углы вертикальные; значит, ∠2 будет равен ∠1. Но углы 2 и 1 - внутренние накрест лежащие углы, а мы уже знаем, что если при пересечении двух прямых третьей внутренние накрест лежащие углы равны, то эти прямые параллельны. Следовательно, АВ || СD.

Если при пересечении двух прямых третьей соответственные углы равны, то эти две прямые параллельны.

На этом свойстве основано построение параллельных прямых при помощи линейки и чертёжного треугольника. Выполняется это следующим образом.

Приложим треугольник к линейке так, как это показано на рис. Будем передвигать треугольник так, чтобы одна его сторона скользила по линейке, а по какой-либо другой стороне треугольника проведём несколько прямых. Эти прямые будут параллельны.

3. Третий признак параллельности.

Пусть нам известно, что при пересечении двух прямых АВ и СD третьей прямой сумма каких-нибудь внутренних односторонних углов равна 2d (или 180°). Будут ли в этом случае прямые АВ и СD параллельны (рис.).

Пусть ∠1 и ∠2-внутренние односторонние углы и в сумме составляют 2d.

Но ∠3 + ∠2 = 2d, как углы смежные. Следовательно, ∠1 + ∠2 = ∠3+ ∠2.

Отсюда ∠1 = ∠3, а эти углы внутренние накрест лежащие. Следовательно, АВ || СD.

Если при пересечении двух прямых третьей сумма внутренних односторонних углов равна 2d (или 180°), то эти две прямые параллельны.


Признаки параллельных прямых:

1. Если при пересечении двух прямых третьей внутренние накрест лежащие углы равны, то эти прямые параллельны.

2.Если при пересечении двух прямых третьей соответственные углы равны, то эти две прямые параллельны.

3. Если при пересечении двух прямых третьей сумма внутренних односторонних углов равна 180°, то эти две прямые параллельны.

4. Если две прямые параллельны третьей прямой, то они параллельны между собой.

5. Если две прямые перпендикулярны третьей прямой, то они параллельны между собой.



Аксиома параллельности Евклида


Задача. Через точку М, взятую вне прямой АВ, провести прямую, параллельную прямой АВ.

Пользуясь доказанными теоремами о признаках параллельности прямых, можно эту задачу решить различными способами,

Решение. 1-й с п о с о б (черт. 199).

Проводим МN⊥АВ и через точку М проводим СD⊥МN;

получаем СD⊥МN и АВ⊥МN.

На основании теоремы ("Если две прямые перпендикулярны к одной и той же прямой, то они параллельны.") заключаем, что СD || АВ.

2-й с п о с о б (черт. 200).

Проводим МК, пересекающую АВ под любым углом α, и через точку М проводим прямую ЕF, образующую с прямой МК угол ЕМК, равный углу α. На основании теоремы (Признаки параллельности прямых) заключаем, что ЕF || АВ.

Решив данную задачу, можем считать доказанным, что через любую точку М, взятую вне прямой АВ, можно провести прямую, ей параллельную. Возникает вопрос, сколько же прямых, параллельных данной прямой и проходящих через данную точку, может существовать?

Практика построений позволяет предполагать, что существует только одна такая прямая, так как при тщательно выполненном чертеже прямые, проведённые различными способами через одну и ту же точку параллельно одной и той же прямой, сливаются.

В теории ответ на поставленный вопрос даёт так называемая аксиома параллельности Евклида; она формулируется так:

Через точку, взятую вне дaнной прямой, можно провести только одну прямую, параллельную этой прямой.

На чертеже 201 через точку О проведена прямая СК, параллельная прямой АВ.

Всякая другая прямая, проходящая через точку О, уже не будет параллельна прямой АВ, а будет её пересекать.

Принятая Евклидом в его "Началах" аксиома, которая утверждает, что на плоскости через точку, взятую вне данной прямой, можно провести только одну прямую, параллельную этой прямой, называется аксиомой параллельности Евклида.

Более двух тысячелетий после Евклида многие учёные-математики пытались доказать это математическое предложение, но всегда их попытки оказывались безуспешными. Только в 1826 г. великий русский учёный, профессор Казанского университета Николай Иванович Лобачевский доказал, что, используя все другие аксиомы Евклида, это математическое предложение доказать нельзя, что оно действительно должно быть принято за аксиому. Н. И. Лобачевский создал новую геометрию, которая в отличие от геометрии Евклида названа геометрией Лобачевского.



Другие материалы по теме: Отрезки. Прямые

  • Сравнение отрезков. Действия над отрезками.
  • Свойства касательной
  • Перпендикуляр и наклонная к прямой
  • Скрещивающиеся прямые
  • Взаимное расположение прямых в пространстве
  • Угол между прямыми в пространстве
  • Теорема о трех перпендикулярах. Задачи.
  • Каноническое и параметрическое уравнения прямой
  • Уравнение прямой с угловым коэффициентом
  • Расстояние от точки до прямой
  • Общее уравнение прямой на плоскости
  • Ортогональные проекции прямых и отрезков
  • Нормированное уравнение прямой
  • Уравнение прямой, проходящей через данную точку перпендикулярно данному вектору