Теория
Пусть в пространстве заданы прямые l и m. Через некоторую точку А пространства проведем прямые l1 || l и m1 || m (рис. 138). Заметим, что точка А может быть выбрана произвольно, в частности она может лежать на одной... Читать далее →


Задачи
  • Периметр прямоугольного треугольника равен 132, а сумма квадратов сторон треугольника — 6050. Найти стороны. Смотреть решение →
  • Внешняя касательная двух окружностей радиусов 5 см и 2 см в 11/2 раза больше их внутренней касательной. Определить расстояние между центрами этих окружностей.  Смотреть решение →
  • Построить отрезки, пропорциональные двум данным отрезкам АВ и СD Смотреть решение →
  • В треугольной пирамиде проводятся сечения, параллельные двум ее непересекающимся ребрам. Найти сечение с наибольшей площадью. Смотреть решение →
  • Доказать, что всякая плоскость, проходящая через середины двух противоположных ребер тетраэдра, делит этот тетраэдр на две равновеликие части. Смотреть решение →
  • В правильную четырехугольную пирамиду вписан куб так, что вершины его лежат на апофемах пирамиды. Найти отношение объема пирамиды к объему куба, зная, что угол между высотой пирамиды и ее боковой гранью равен αСмотреть решение →
  • Основанием пирамиды служит равнобедренный треугольник с боковыми сторонами, равными а, и углом между ними, равным α. Все боковые ребра наклонены к основанию под углом β. Определить объем пирамиды. Смотреть решение →
  • В прямоугольной трапеции, высота которой равна h , на стороне, не перпендикулярной к основанию, как на диаметре, описана окружность, и оказалось, что она касается противоположной стороны трапеции. Найти площадь прямоугольного треугольника, у которого катеты — основания трапеции. Смотреть решение →
  • В треугольник вписан квадрат так, что одна из его сторон лежит на наибольшей стороне треугольника. Доказать неравенство √2r < х < 2r , где х - длина стороны квадрата, r - радиус круга, вписанного в данный треугольник.  Смотреть решение →
  • В основании прямой призмы лежит трапеция, вписанная в полукруг радиуса R так, что большее основание ее совпадает с диаметром, а меньшее стягивает дугу, равную 2α. Определить объем призмы, если диагональ грани, проходящей через боковую сторону основания, наклонена к основанию под углом αСмотреть решение →