Теория
Рассмотрим тело вращения, полученное вращением вокруг оси абсцисс криволинейной трапеции, которая соответствует неотрицательной непрерывной функции
у = f(x), х \( \in \) [а; b] (рис. 250).
Очевидно, что сечение этого тела плоскостью, проходящей через точку с абсциссой
х \( \in...
Читать далее →
Задачи
Биссектриса острого угла равнобедренной трапеции ABCD делит боковую сторону длиной 17 в отношении 6:5, считая от большего основания. Найдите площадь ABCD, если меньшее основание равно 2. Смотреть решение →
В конус, радиус основания которого равен R и образующие наклонены к основанию под углом α/2, вписана прямая треугольная призма так, что ее нижнее основание лежит на основании конуса, а вершины верхнего — на боковой поверхности конуса. Определить боковую поверхность призмы, если в основании призмы лежит прямоугольный треугольник с острым углом α, а высота призмы равна радиусу сечения конуса плоскостью, проходящей через верхнее основание призмы. Смотреть решение →
Полная поверхность правильной четырехугольной пирамиды равна S, а плоский угол боковой грани при вершине равен α. Найти высоту пирамиды. Смотреть решение →
Найти отношение площади треугольника ABC к площади другого треугольника, стороны которого равны медианам треугольника ABC. Смотреть решение →
В равнобедренной трапеции диагональ перпендикулярна к боковой стороне. Боковая сторона равна b и составляет с большим основанием угол α. Определить поверхность тела, образованного вращением трапеции вокруг большего основания. Смотреть решение →
В равнобедренном треугольнике длины боковых сторон равны а каждая, а длина отрезка прямой, проведенного из вершины треугольника к его основанию и делящего угол между равными сторонами в отношении 1:2, равна t. Определить площадь этого треугольника. Смотреть решение →
Из вершины тупого угла ромба опущены перпендикуляры на его стороны. Длина каждого перпендикуляра равна а, расстояние между их основаниями равно b. Определить площадь ромба. Смотреть решение →
Ребро правильного тетраэдра равно a. Плоскость P проходит через вершину В и середины ребер АС и AD. Шар касается прямых AB, АС, AD и той части плоскости P, которая заключена внутри тетраэдра. Найти радиус шара. Смотреть решение →
Около правильной шестиугольной пирамиды описан конус. Найти его объем, если ребро пирамиды равно l и плоский угол между двумя соседними боковыми ребрами равен α. Смотреть решение →
В основании пирамиды лежит прямоугольник. Одна из боковых граней имеет вид равнобедренного треугольника и перпендикулярна к основанию; в другой грани, противоположной первой, боковые ребра, равные b, образуют между собой угол 2α и наклонены к первой грани под углом α. Определить объем пирамиды и угол между указанными двумя гранями. Смотреть решение →