Теория
В пространстве две различные прямые могут лежать или не лежать в одной плоскости. Рассмотрим соответствующие примеры.
Пусть точки А, В, С не лежат на одной прямой. Проведем через них плоскость р и выберем некоторую точку S, не принадлежащую плоскости р (рис....
Читать далее →
Задачи
n равных конусов имеют общую вершину. Каждый касается двух других по образующей, а все касаются одной плоскости. Найти угол при вершине осевого сечения этих конусов. Смотреть решение →
В основании прямой призмы лежит равнобочная трапеция с острым углом α, описанная около круга радиуса r. Через боковую сторону нижнего основания и противоположную вершину острого угла верхнего основания проведена плоскость, образующая с плоскостью основания угол α. Определить боковую поверхность призмы и площадь сечения. Смотреть решение →
От правильной четырехугольной призмы плоскостью, проходящей через диагональ нижнего основания и одну из вершин верхнего основания, отсечена пирамида с полной поверхностью S. Найти полную поверхность призмы, если угол при вершине треугольника, получившегося в сечении, равен α. Смотреть решение →
В равнобедренной трапеции диагональ перпендикулярна к боковой стороне. Боковая сторона равна b и составляет с большим основанием угол α. Определить поверхность тела, образованного вращением трапеции вокруг большего основания. Смотреть решение →
К кругу радиуса R проведены из одной точки две касательные, составляющие между собой угол 2α. Определить площадь между этими касательными и дугой круга. Смотреть решение →
Окружность радиуса, равного высоте некоторого равнобедренного треугольника, катится по основанию этого треугольника. Доказать, что величина дуги, отсекаемой на окружности боковыми сторонами треугольника, остается при этом постоянной. Будет ли это предложение верно для неравнобедренного треугольника? Смотреть решение →
В параллелограмме проведены биссектрисы внутренних углов до взаимного пересечения. Доказать, что четырехугольник, образованный этими биссектрисами, - прямоугольник. Смотреть решение →
Прямая линия — касательная к боковой поверхности конуса — составляет с образующей, проходящей через точку касания, угол θ. Какой угол φ составляет эта прямая с плоскостью основания Р конуса, если образующие его наклонены к плоскости Р под углом α? Смотреть решение →
В конус вписана полусфера, большой круг которой лежит на основании конуса. Определить угол при вершине конуса, зная, что поверхность конуса относится к поверхности полусферы как 18:5. Смотреть решение →
Определить угол прямоугольного треугольника, зная, что радиус описанного около него круга относится к радиусу вписанного круга, как 5:2. Смотреть решение →