Теория
1. Определение параллелограмма. Если пару параллельных прямых пересечём другой парой параллельных прямых, то получим четырёхугольник, у которого противоположные стороны попарно параллельны. В четырёхугольниках ABDС и ЕFNМ (рис. 224) ВD || АС и AB || СD; ЕF || МN и ЕМ || FN. Четырёхугольник,... Читать далее →


Задачи
  • В точке А плоскости Р расположен источник света. Над плоскостью помещено полусферическое зеркало радиуса 1, обращенное внутренней зеркальной поверхностью к плоскости, причем так, что ось симметрии зеркала перпендикулярна к плоскости Р в точке А. Зная, что наименьший угол между лучами, отраженными зеркалом и плоскостью Р, равен 15°, определить расстояние от зеркала до плоскости и радиус освещенного на плоскости Р круга. Смотреть решение →
  • В конус вписан шар, причем отношение их объемов равно k. Найти отношение объемов шаровых сегментов, отсекаемых от шара плоскостью, проходящей через линию касания шара с конусом. Смотреть решение →
  • Плоскость, пересекающая поверхность треугольной пирамиды, делит медиану граней, выходящие из одной вершины, в отношениях 2:1, 1:2, 4:1 соответственно (считая от вершины). В каком отношении эта плоскость делит объем пирамиды? Смотреть решение →
  • Доказать, что если разделить хорду окружности на три равные части и соединить с центром окружности концы хорды и точки деления, то соответствующий центральный угол разделится на три части, одна из которых больше двух других. Смотреть решение →
  • Доказать, что прямые, соединяющие последовательно центры квадратов, построенных на сторонах параллелограмма и примыкающих к нему извне, образуют также квадрат. Смотреть решение →
  • Вычислите объём правильной треугольной пирамиды, если радиус вписанной в основание окружности равен √3, а боковые ребра пирамиды равны 6. Смотреть решение →
  • Из точки, отстоящей от центра круга на m см, проведены касательные к кругу. Расстояние между точками касания равно a см. Определить радиус круга.  Смотреть решение →
  • Ромб с острым углом αи стороной а разделен прямыми, исходящими из вершины этого острого угла, на три равновеликие части. Определить длины отрезков этих прямых. Смотреть решение →
  • В основании пирамиды лежит равнобедренный треугольник с углом αпри основании. Все боковые ребра наклонены к плоскости основания под равными углами φ= 90°— α. Площадь сечения, проведенного через высоту пирамиды и через вершину равнобедренного треугольника, лежащего в основании, равна Q. Определить объем пирамиды. Смотреть решение →
  • В равнобедренном треугольнике с основанием, равным 4 см, и высотой, равной 6 см, на боковой стороне, как на диаметре, построена полуокружность. Точки пересечения ее с основанием и боковой стороной соединены прямой. Определить площадь получившегося четырехугольника, вписанного в полукруг.  Смотреть решение →