Теория
Окружностью называется множество точек плоскости, равноудаленных от данной точки, называемой центром. Если точка С — центр окружности, R — ее радиус, а М — произвольная точка окружности, то по определению окружности |CM| = R (1) Равенство (1) есть уравнение окружности радиуса R с... Читать далее →


Задачи
  • В треугольнике с вершинами в точках М1(-5; 2), М2(5; 6) и М3(1; -2) проведена медиана М1А1. Требуется составить уравнение прямой, проходящей через точку А1 перпендикулярно медиане M1A1 Смотреть решение →
  • Решить уравнение cos 4x cos 2x = cos 5x cos x Смотреть решение →
  • Даны две стороны b и с треугольника и его площадь S = 2/5 . Найти третью сторону а треугольника.  Смотреть решение →
  • Найти значения тригонометрических функций угла φ, если известно, что он оканчивается в 4-й четверти и tg φ = - 3/4 Смотреть решение →
  • Центры четырех кругов радиуса rрасположены в вершинах квадрата со стороной а. Найти площадь S общей части всех четырех кругов, заключенной внутри квадрата. Смотреть решение →
  • В основании пирамиды лежит прямоугольник. Одна из боковых граней имеет вид равнобедренного треугольника и перпендикулярна к основанию; в другой грани, противоположной первой, боковые ребра, равные b, образуют между собой угол 2α и наклонены к первой грани под углом α. Определить объем пирамиды и угол между указанными двумя гранями. Смотреть решение →
  • Из точки, лежащей вне круга, проведены две секущие, внешние части которых содержат по 2 м. Определить площадь четырехугольника, вершинами которого служат точки пересечения секущих с окружностью, зная, что длина двух его противоположных сторон равна 6 м и 2,4 м.  Смотреть решение →
  • Около правильной четырехугольной призмы описан цилиндр, площадь боковой поверхности которого равна 20π. Найдите площадь боковой поверхности призмы. Смотреть решение →
  • Доказать, что если точка перемещается в плоскости основания правильной пирамиды, оставаясь внутри этого основания, то сумма расстояний этой точки от боковых граней постоянна. Смотреть решение →
  • Даны окружность К и ее хорда АВ. Рассматриваются все треугольники, вписанные в окружность и имеющие основанием данную хорду. В каждом треугольнике взята точка пересечения высот. Найти геометрическое место этих точек. Смотреть решение →