Теория
Относительное положение прямой и окружности Прямая относительно окружности может находиться в следующих трех положениях: Расстояние от центра окружности до прямой больше радиуса. В этом случае все точки прямой лежат вне круга. Расстояние от центра окружности до прямой меньше радиуса. В этом случае прямая... Читать далее →


Задачи
  • Дана правильная n-угольная призма. Площадь основания равна S. Две плоскости пересекают все боковые ребра призмы таким образом, что объем части призмы между плоскостями равен V. Найти сумму длин отрезков боковых ребер призмы, заключенных между плоскостями, если известно, что плоскости не имеют общих точек внутри призмы. Смотреть решение →
  • Из точки А, расположенной внутри угла с зеркальными сторонами, исходит луч света. Доказать, что число отражений, которое испытывает этот луч от сторон угла, всегда конечно. Найти это число, если данный угол равен α, а луч направлен под углом β к одной из его сторон. Выяснить условия, при которых луч снова пройдет через точку А.  Смотреть решение →
  • Дана прямоугольная трапеция с основаниями а, b и меньшей боковой стороной с. Определить расстояния точки пересечения диагоналей трапеции от основания а и от меньшей боковой стороны.  Смотреть решение →
  • В шаре радиуса R из точки его поверхности проведены три равные хорды под углом α друг к другу. Определить их длину. Смотреть решение →
  • Решить уравнение sin 2х = cos х sin 2x Смотреть решение →
  • Доказать, что функция cos√x не является периодической (т. е. не существует такого постоянного числа Т =/= 0, чтобы при всех х было cos√x + T = cos√x Смотреть решение →
  • К двум окружностям радиусов R и r, находящимся в положении внешнего касания, проведены их общие касательные - внутренняя и две внешние. Определить длину отрезка внутренней касательной, заключенного между внешними касательными. Смотреть решение →
  • Даны три плоских угла трехгранного угла SABC: ∠BSC= α; ∠CSA =β; ∠ASB = γ. Найти двугранные углы этого трехгранного угла. Смотреть решение →
  • Основание четырехугольной пирамиды — прямоугольник с диагональю, равной b, и углом αмежду диагоналями. Каждое из боковых ребер образует с основанием угол β. Найти объем пирамиды. Смотреть решение →
  • В правильную n-угольную пирамиду со стороной основания а и боковым ребром b вписан шар. Найти его радиус. Смотреть решение →