Теория
Пусть требуется найти площадь параллелограмма АВСD (рис. 272, а). Примем сторону АВ за основание параллелограмма и из вершин D и С проведём высоты DМ и СK. Площадь полученного прямоугольника МKСD равна произведению МК на DМ.
Треугольники АDМ и ВСК равны, так...
Читать далее →
Задачи
В правильной четырехугольной призме через середины двух смежных сторон основания проведена плоскость, пересекающая три боковых ребра и наклоненная к плоскости основания под углом α. Определить площадь полученного сечения и острый угол его, если сторона основания призмы равна b. Смотреть решение →
Боковые грани правильной четырехугольной пирамиды наклонены к основанию под углом α. Апофема пирамиды равна m. Найти полную поверхность конуса, вписанного в пирамиду, а также угол наклона бокового ребра к основанию. Смотреть решение →
В равносторонний треугольник со стороной а вписан круг. Затем в этот треугольник вписаны еще три круга, касающиеся первого круга и сторон треугольника, и еще три круга, касающиеся только что вписанных кругов и сторон треугольника, и т. д. Найти сумму площадей всех вписанных кругов ( то есть предел суммы площадей вписанных кругов.) Смотреть решение →
В конус вписан шар. Найти объем шара, если образующая конуса равна l и наклонена к плоскости основания под углом α. Смотреть решение →
Внутри правильной треугольной пирамиды расположена вершина трехгранного угла, все плоские углы которого прямые, а биссектрисы плоских углов проходят через вершины основания. В каком отношении поверхность этого угла делит объем пирамиды, если каждая грань пирамиды разделена ею на две равновеликие части? Смотреть решение →
Доказать, что если окружность касается изнутри трех сторон четырехугольника и пересекает четвертую сторону, то сумма этой последней и противоположной стороны больше суммы двух других сторон четырехугольника. Смотреть решение →
В шар вписан конус, объем которого равен 1/4 объема шара. Найти объем шара, если высота конуса равна Н. Смотреть решение →
Решить уравнение sin х - √3 cos х = 1 Смотреть решение →
Определить угол параллелограмма, если даны две его высоты h1 и h2 и периметр 2р. Смотреть решение →
Прямая пересекает параллельные стороны квадрата; вторая прямая, перпендикулярная первой, пересекает две другие стороны квадрата. Доказать, что отрезки этих прямых, ограниченные точками пересечения со сторонами квадрата, равны между собой. Смотреть решение →