Теория
Проекция точки и прямой на плоскость. Мы говорили ранее, что когда из одной точки проведены к плоскости перпендикуляр и наклонная, то проекцией этой наклонной на плоскость называется отрезок, соединяющий основание перпендикуляра с основанием наклонной. Дадим теперь более общее определение проекции.
1)...
Читать далее →
Задачи
В основании пирамиды лежит прямоугольный треугольник, у которого один острый угол равен αи радиус вписанного круга равен r. Каждая из боковых граней образует с основанием угол α. Определить объем, боковую и полную поверхность пирамиды. Смотреть решение →
Середины сторон правильного n-угольника соединены прямыми, образующими новый правильный n-угольник, вписанный в данный. Найти отношение их площадей. Смотреть решение →
Доказать формулу \( sin x+sin2x+...+sin nx=\frac{sin\frac{nx}{2}sin\frac{(n+1)x}{2}}{sin\frac{x}{2}} \) Указание. Можно воспользоваться формулой Муавра
(cos x + i sin x)n = cos nx + i sin nx Смотреть решение →
Радиус шара, вписанного в четырехугольную правильную пирамиду, равен r. Двугранный угол, образованный двумя соседними боковыми гранями этой пирамиды, равен α. Определить объем пирамиды,.имеющей вершину в центре шара, а вершины основания — в четырех точках касания шара с боковыми гранями данной пирамиды. Смотреть решение →
Выразить sin 5х через sin х и с помощью полученной формулы вычислить без таблиц sin 36° Смотреть решение →
В пространстве рассматриваются два отрезка АВ и CD, не лежащих в одной плоскости. Пусть MN-отрезок, соединяющий их середины. Доказать, что \( \frac{AB + BC}{2} > MN \) (здесь AD, ВС и MN-длины соответствующих отрезков). Смотреть решение →
В сферу S радиуса R вписаны восемь сфер меньшего радиуса, каждая из которых касается двух соседних, а все вместе касаются сферы S по окружности большого круга. Затем в пространство между сферами вписана еще одна сфера S1, которая касается всех восьми сфер меньшего радиуса и сферы S. Найти радиус ρ этой последней сферы.
Смотреть решение →
Вычислите объём правильной шестиугольной пирамиды, если сторона основания равна 4, а боковые ребра пирамиды равны 5 Смотреть решение →
Доказать, что в прямоугольном треугольнике сумма катетов равна сумме диаметров вписанной и описанной окружностей. Смотреть решение →
В правильную треугольную пирамиду вписан конус. Найти объем конуса, если ребро пирамиды равно l и плоский угол между двумя соседними боковыми ребрами равен α. Смотреть решение →