Теория
При решении прямоугольных треугольников используются только основные тригонометрические функции. Для решения же косоугольных треугольников потребуется знание зависимостей между сторонами и тригонометрическими функциями углов косоугольных треугольников, известные как теоремы синусов, косинусов и тангенсов. К выводу этих теорем мы и переходим. В дальнейшем... Читать далее →


Задачи
  • В основании пирамиды лежит трапеция, у которой диагональ перпендикулярна к боковой стороне и образует с основанием угол α. Все боковые ребра равны между собой. Боковая грань, проходящая через большее основание трапеции, имеет угол при вершине пирамиды φ= 2α и площадь, равную S. Определить объем пирамиды и углы, под которыми наклонены боковые грани к плоскости основания. Смотреть решение →
  • Через вершину конуса под углом φ к основанию проведена плоскость, отсекающая от окружности основания дугу α; расстояние плоскости от центра основания равно а. Найти объем конуса. Смотреть решение →
  • В основании прямой призмы ABCA1B1C1 лежит прямоугольный треугольник ABC с углом β при вершине В (β < 45°). Разность между площадями ее боковых граней, проходящих через катеты ВС и АС, равна S. Найти площадь сечения призмы плоскостью, образующей с плоскостью основания угол φ и проходящей через три точки: вершину В1 угла β верхнего основания, середину бокового ребра АА1 и точку D, расположенную на плоскости основания симметрично с вершиной В относительно катета АС. Смотреть решение →
  • Около правильного n-угольника со стороной а описана окружность и в него вписана окружность. Определить площадь кольца между этими окружностями и ширину его. Смотреть решение →
  • Конус с высотой Н и углом между образующей и высотой, равным α, надо рассечь сферической поверхностью с центром в вершине конуса так, чтобы объем конуса оказался разделенным пополам. Найти радиус этой сферы. Смотреть решение →
  • Около шара радиуса r описана правильная n-угольная пирамида, у которой двугранный угол при основании равен α. Найти отношение объема шара к объему пирамиды. Смотреть решение →
  • В равнобедренной трапеции ABCD основания равны 21 и 9, а высота равна 8. Найдите радиус окружности, описанной около этой трапеции. Смотреть решение →
  • Найти геометрическое место центров сечений шара плоскостями, проходящими через данную точку С. Разобрать случаи, когда данная точка находится вне шара, на поверхности шара или внутри шара. Смотреть решение →
  • Из точки, взятой на ребре правильной треугольной призмы со стороной основания а, проведены две плоскости. Одна проходит через сторону нижнего основания призмы под углом α к последнему, а другая — через параллельную ей сторону верхнего основания под углом β к нему. Определить объем призмы и сумму площадей полученных сечений. Смотреть решение →
  • Внутрь острого угла вписываются круги, касающиеся друг друга. Показать, что радиусы этих кругов образуют геометрическую прогрессию. Найти зависимость между знаменателем прогрессии и величиной острого угла. Смотреть решение →