Теория
Рассмотрим тело вращения, полученное вращением вокруг оси абсцисс криволинейной трапеции, которая соответствует неотрицательной непрерывной функции у = f(x), х \( \in \) [а; b] (рис. 250). Очевидно, что сечение этого тела плоскостью, проходящей через точку с абсциссой х \( \in... Читать далее →


Задачи
  • Доказать, что две плоскости, проведенные через концы двух троек ребер параллелепипеда, исходящих из концов диагонали параллелепипеда, рассекают эту диагональ на три равные части. Смотреть решение →
  • Определить объем правильного восьмиугольника (октаэдра) с ребром а и двугранные углы при его ребрах. Смотреть решение →
  • Из точки вне круга проведены две секущие. Внутренний отрезок первой равен 47 м, а внешний 9 м; внутренний отрезок второй секущей на 72 м больше внешнего ее отрезка. Определить длину второй секущей. Смотреть решение →
  • В квадрат вписан другой квадрат, вершины которого лежат на сторонах первого, а стороны составляют со сторонами первого квадрата углы по 30o. Какую часть площади данного квадрата составляет площадь вписанного?  Смотреть решение →
  • Доказать, что если сумма

    а1 cos (α1 + х) + а2 cos (α2 + х) + ... + аn cos (αn + x)

    при x = 0 и x = x1 =/= kπ (k - целое) обращается в нуль, то она равна нулю при всяком х Смотреть решение →

  • Доказать, что во всяком треугольнике биссектриса лежит между медианой и высотой, проведенными из той же вершины. Смотреть решение →
  • В точках А и В прямой, по одну сторону от нее, восставлены два перпендикуляра АА1 = а и ВВ1 = b. Доказать, что при сохранении величин а и b точка пересечения прямых АВ1 и А1В будет находиться на одном и том же расстоянии от прямой АВ независимо от положения точек А и В.  Смотреть решение →
  • Три шара, среди которых имеются два одинаковых, касаются плоскости Р и, кроме того, попарно касаются друг друга. Вершина прямого кругового конуса принадлежит плоскости Р, а ось конуса перпендикулярна этой плоскости. Все три шара расположены вне конуса, причем каждый из них касается его боковой поверхности. Найти косинус угла между образующей конуса и плоскостью Р, если известно, что в треугольнике с вершинами в точках касания шаров с плоскостью один из углов равен 150°. Смотреть решение →
  • Плоскость, пересекающая поверхность треугольной пирамиды, делит медиану граней, выходящие из одной вершины, в отношениях 2:1, 1:2, 4:1 соответственно (считая от вершины). В каком отношении эта плоскость делит объем пирамиды? Смотреть решение →
  • Найти высоту правильной четырехугольной пирамиды, если известно, что объем шара, описанного около пирамиды, равен V, а перпендикуляр, опущенный из центра шара на ее боковую грань, образует с высотой пирамиды угол αСмотреть решение →