Теория
Построим прямой угол и на его сторонах отложим равные отрезки АВ и АС (рис. 241). Через точки В и С проведём прямые, параллельные сторонам АС и А В. Точку пересечения их обозначим через О. Мы получили четырёхугольник, в котором: а) противоположные стороны... Читать далее →


Задачи
  • Дан четырехугольник ABCD такой, что \(\overrightarrow{AD}\) = \(\overrightarrow{AC}\) - \(\overrightarrow{AB}\).
    Доказать, что ABCD - параллелограмм. Смотреть решение →

  • Через некоторую точку, взятую внутри треугольника, проведены три прямые, соответственно параллельные его сторонам. Эти прямые разделяют площадь треугольника на шесть частей, три из которых - треугольники с площадями, равными S1, S2, S3. Найти площадь данного треугольника. Смотреть решение →
  • В треугольнике АВС ВМ и CN – биссектрисы внешних углов В и С, АМ и AN – перпендикуляры, опущенные из вершины А соответственно на ВМ и CN. Доказать, что длина отрезка MN равна полупериметру треугольника АВС Смотреть решение →
  • Основания трапеции равны а и b, боковые стороны равны c u d. Вычислить углы трапеции. Смотреть решение →
  • Ромб с острым углом αи стороной а разделен прямыми, исходящими из вершины этого острого угла, на три равновеликие части. Определить длины отрезков этих прямых. Смотреть решение →
  • Стороны квадрата разделены в отношении m к n, причем к каждой вершине прилежит один большой и один малый отрезок. Последовательные точки деления соединены прямыми. Найти площадь полученного четырехугольника, если сторона данного квадрата равна а.  Смотреть решение →
  • Из точки, лежащей вне круга, проведены две секущие, внешние части которых содержат по 2 м. Определить площадь четырехугольника, вершинами которого служат точки пересечения секущих с окружностью, зная, что длина двух его противоположных сторон равна 6 м и 2,4 м.  Смотреть решение →
  • Рассматриваются два треугольника ABC и А1В1С1, которые лежат в непараллельных плоскостях и имеют попарно непараллельные стороны. При этом прямые, соединяющие соответственные вершины, пересекаются в одной точке О. Доказать, что продолжения соответственных сторон треугольников попарно пересекаются и точки их пересечения лежат на одной прямой. Смотреть решение →
  • Треугольник АВС после поворота около вершины А занял положение АВ’С’. Доказать, что если прямая АС делит отрезок ВВ’ пополам, то прямая АВ’ делит пополам отрезок СС’ Смотреть решение →
  • На отрезке длины 2а + 2b и его частях длины 2а и 2b как на диаметрах построены полуокружности, лежащие по одну сторону от отрезка. Найти радиус окружности, касающейся трех построенных полуокружностей. Смотреть решение →