Теория
Пусть на плоскости, где имеется прямоугольная декартова система координат, прямая l проходит через точку М0 параллельно направляющему вектору а (рис. 96). Если прямая l пересекает ось Ох (в точке N), то под углом прямой l с осью Ох будем понимать... Читать далее →


Задачи
  • Определить угол между высотой и образующей конуса, если известно, что объем конуса в 11/3 раза больше объема полушара, вписанного в конус так, что плоская грань полушара лежит в основании конуса, а полушаровая поверхность касается боковой поверхности конуса. Смотреть решение →
  • Около правильной шестиугольной призмы описан цилиндр. Объём цилиндра равен 16π, высота цилиндра равна 4. Найдите объём призмы. Смотреть решение →
  • Найти площадь сегмента, если периметр его равен р, а дуга содержит 120°. Смотреть решение →
  • Вычислить угол между прямой и плоскостью: $$ а) \; \frac{x-1}{2}=\frac{y}{2}=\frac{z-7}{-1} \;\;и\;\; 4x+y+z+13=0 \\ б) \begin{cases} x = 2-3t\\y=1-t\\z=-4t\end{cases} \;\;и \;\;x+2y-z+1=0 \\ в) \begin{cases} 3x-2y+z+1=0\\4x-3y+4z=0\end{cases} \;\;и \;\;2x-y-2z+5=0 $$ Смотреть решение →
  • Из точки, отстоящей от центра круга на m см, проведены касательные к кругу. Расстояние между точками касания равно a см. Определить радиус круга.  Смотреть решение →
  • К окружности проведены две касательные, которые пересекают в точках А и В прямую, проходящую через центр окружности, и образуют с этой прямой равные углы. Доказать, что любая (подвижная) касательная отсекает на данных (неподвижных) касательных отрезки АС и BD, произведение которых постоянно.  Смотреть решение →
  • Внутри круга, радиус которого равен 13 см, дана точка M, отстоящая от центра на 5 см. Через точку M проведена хорда AB = 25 см. Определить длину отрезков, на которые хорда AB делится точкой M. Смотреть решение →
  • Из точки вне круга проведены две секущие. Внутренний отрезок первой равен 47 м, а внешний 9 м; внутренний отрезок второй секущей на 72 м больше внешнего ее отрезка. Определить длину второй секущей. Смотреть решение →
  • В правильной n-угольной пирамиде плоский угол при вершине равен α, а сторона основания а. Определить объем. Смотреть решение →
  • В равнобедренной трапеции ABCD основания равны 21 и 9, а высота равна 8. Найдите радиус окружности, описанной около этой трапеции. Смотреть решение →