Теория
Еще один способ определения положения точки на плоскости при помощи чисел - полярная система координат. Рассмотрим на плоскости ось l с единичным вектором е и началом отсчета О (рис. 42). Пусть М произвольная точка плоскости, не совпадающая с точкой О. Тогда \(\overrightarrow{OM}\)... Читать далее →


Задачи
  • Тетраэдр, ребро которого равно а, пересечен плоскостью, содержащей одно из ребер тетраэдра, и делящей противоположное ребро в отношении 2 : 1. Определить площадь сечения и углы этого сечения. (Под тетраэдром здесь понимается правильный четырехгранник (иногда тетраэдром называется произвольная треугольная пирамида)Смотреть решение →
  • На ребре двугранного угла дан отрезок АВ. В одной из граней дана точка М, в которой прямая, проведенная из точки А под углом α к АВ, пересекает прямую, проведенную из В перпендикулярно к АВ. Определить величину двугранного угла, если прямая AM наклонена ко второй грани двугранного угла под углом βСмотреть решение →
  • В усеченный конус вписан шар радиуса r. Образующая конус наклонена к основанию под углом α. Найти боковую поверхность усеченного конуса. Смотреть решение →
  • Три шара, среди которых имеются два одинаковых, касаются плоскости Р и, кроме того, попарно касаются друг друга. Вершина прямого кругового конуса принадлежит плоскости Р, а ось конуса перпендикулярна этой плоскости. Все три шара расположены вне конуса, причем каждый из них касается его боковой поверхности. Найти косинус угла между образующей конуса и плоскостью Р, если известно, что в треугольнике с вершинами в точках касания шаров с плоскостью один из углов равен 150°. Смотреть решение →
  • В правильной треугольной пирамиде SABC плоский угол при вершине равен α, а кратчайшее расстояние между боковым ребром и противоположной стороной основания равно d. Найти объем этой пирамиды.  Смотреть решение →
  • Полная поверхность правильной четырехугольной пирамиды равна S, а плоский угол боковой грани при вершине равен α. Найти высоту пирамиды. Смотреть решение →
  • Найти значения тригонометрических функций угла φ, если известно, что sin φ = 3/5. Смотреть решение →
  • Дан усеченный конус, боковая поверхность которого равна площади круга, имеющего своим радиусом образующую усеченного конуса. Доказать, что в данный конус можно вписать шар. Смотреть решение →
  • Сторона основания правильной четырехугольной пирамиды равна а, высота пирамиды h. Через сторону основания пирамиды и середину скрещивающегося с ней бокового ребра проведено сечение. Определить расстояние от вершины пирамиды до плоскости этого сечения.  Смотреть решение →
  • Даны две параллельные прямые и точка А между ними. Найти стороны прямоугольного треугольника, вершина прямого угла которого лежит в точке А, а вершины острых углов — на заданных параллельных прямых, зная, что площадь треугольника равна заданной величине k2.  Смотреть решение →