Теория
1. Треугольник обозначается тремя заглавными буквами, стоящими при его вершинах. Для сокращения записи слов «треугольник» заменяют знаком \(\Delta\). Треугольник, изображённый на чертеже 111, можно записать так: \(\Delta\)АВС. Сторону треугольника принято обозначать той же буквой, что и вершину угла, противолежащего этой стороне,... Читать далее →


Задачи
  • Длины диагоналей ромба относятся как 3:4. Во сколько раз площадь ромба больше площади вписанного в него круга? Смотреть решение →
  • Доказать, что прямая, соединяющая середины параллельных сторон трапеции, пройдет через точку пересечения диагоналей. Смотреть решение →
  • В правильной четырехугольной пирамиде SABCD (ABCD - основание) сторона основания равна a, а угол между боковым ребром и плоскостью основания равен α. Плоскость, параллельная диагонали основания АС и боковому ребру BS, пересекает пирамиду так, что в сечение можно вписать окружность. Определить радиус этой окружности. Смотреть решение →
  • К двум окружностям радиусов R и r, находящимся в положении внешнего касания, проведены их общие внешние касательные. Определить площадь трапеции, ограниченной этими касательными и хордами, соединяющими точки касания.  Смотреть решение →
  • Боковые стороны трапеции равны 3 и 5. Известно, что в трапецию можно вписать окружность. Средняя линия трапеции делит ее на две части, отношение площадей которых равно 5/11. Найти основания трапеции Смотреть решение →
  • На двух взаимно перпендикулярных скрещивающихся прямых, кратчайшее расстояние между которыми PQ = h, даны две точки А и В, из которых отрезок PQ виден под углами αи β. Определить угол наклона отрезка АВ к отрезку PQ. Смотреть решение →
  • Даны две параллельные прямые и точка А между ними. Найти стороны прямоугольного треугольника, вершина прямого угла которого лежит в точке А, а вершины острых углов — на заданных параллельных прямых, зная, что площадь треугольника равна заданной величине k2.  Смотреть решение →
  • Внутри правильной треугольной пирамиды расположена вершина трехгранного угла, все плоские углы которого прямые, а биссектрисы плоских углов проходят через вершины основания. В каком отношении поверхность этого угла делит объем пирамиды, если каждая грань пирамиды разделена ею на две равновеликие части? Смотреть решение →
  • В основании четырехугольной пирамиды SABCD лежит квадрат ABCD со стороной a. Оба угла между противоположными боковыми гранями прямые. Двугранный угол при ребре SA равен α. Найти объем пирамиды. Смотреть решение →
  • В правильную треугольную призму вписан шар, касающийся трех граней и обоих оснований призмы. Найти отношение поверхности шара к полной поверхности призмы. Смотреть решение →