Теория
Рассмотрим два прямоугольных треугольника с острыми углами в 60° и 30° (рис. 364). Стороны второго треугольника по сравнению с первым уменьшены в два раза: \(\frac{AB}{A’B’}\) = 2; \(\frac{AC}{A’C’}\) = 2; \(\frac{BC}{B’C’}\) = 2. У этих треугольников углы попарно равны. Стороны, лежащие против равных... Читать далее →


Задачи
  • В параллелограмме проведены биссектрисы внутренних углов до взаимного пересечения. Доказать, что четырехугольник, образованный этими биссектрисами, - прямоугольник. Смотреть решение →
  • Доказать, что в прямоугольном треугольнике сумма катетов равна сумме диаметров вписанной и описанной окружностей. Смотреть решение →
  • К двум окружностям радиусов R и r, находящимся в положении внешнего касания, проведены их общие внешние касательные. Определить площадь трапеции, ограниченной этими касательными и хордами, соединяющими точки касания.  Смотреть решение →
  • В треугольной пирамиде SABC с основанием АВС и равными боковыми ребрами сумма двугранных углов с ребрами SA и SC равна 180°. Известно, что |АВ| = a, |ВС| = b. Найти длину бокового ребра. Смотреть решение →
  • Через вершину конуса проведена плоскость под углом α к основанию конуса. Эта плоскость пересекает основание по хорде АВ длины a , стягивающей дугу основания конуса, которой соответствует центральный угол β. Найти объем конуса. Смотреть решение →
  • Диагональ прямоугольного параллелепипеда, равная d, образует с боковой гранью угол β= 90°— α. Плоскость, проведенная через эту диагональ и боковое ребро, пересекающееся с ней, образует с той же боковой гранью угол α(доказать, что α > 45°). Определить объем параллелепипеда. Смотреть решение →
  • Дан параллелограмм, в котором острый угол 60°. Определить отношение длин сторон, если отношение квадратов длин диагоналей параллелограмма равно 19/7Смотреть решение →
  • Данный треугольник ABC пересечь прямой DE, параллельной ВС, так, чтобы площадь треугольника BDE равнялась заданной величине k2. При каком соотношении между k2и площадью треугольника ABC задача разрешима и сколько она имеет решений?  Смотреть решение →
  • Дана плоскость Р и две точки А и В вне ее. Через А и В проводятся всевозможные сферы, касающиеся плоскости Р. Найти геометрическое место точек касания. Смотреть решение →
  • Через вершину конуса проведены две плоскости. Одна из них наклонена к плоскости основания конуса под углом α и пересекает это основание по хорде, длина которой равна а, а другая наклонена к плоскости основания под углом β и пересекает основание по хорде, длина которой равна b. Определить объем конуса. Смотреть решение →