Теория
Раздел геометрии, в котором изучаются фигуры, расположенные в пространстве, называется стереометрией. Основными понятиями стереометрии являются точка, прямая и плоскость. Пространство состоит из бесконечного множества точек. Прямые и плоскости состоят из бесконечного множества точек пространства и не совпадают со всем пространством. Сформулируем основные... Читать далее →


Задачи
  • Из середины высоты правильной четырехугольной пирамиды опущен перпендикуляр на боковое ребро, равный h, и перпендикуляр на боковую грань, равный b. Найти объем пирамиды. Смотреть решение →
  • Боковая поверхность правильной четырехугольной пирамиды содержит S см2, высота пирамиды Н см. Найти сторону основания пирамиды. Смотреть решение →
  • В правильную n-угольную пирамиду со стороной основания а и боковым ребром b вписан шар. Найти его радиус. Смотреть решение →
  • Решить уравнение cos 4x cos 2x = cos 5x cos x Смотреть решение →
  • Дан правильный тетраэдр с ребром a. Сфера касается трех ребер тетраэдра, выходящих из одной вершины, в их концах. Найти площадь части сферической поверхности, расположенной внутри тетраэдра. Смотреть решение →
  • В равнобедренной трапеции ABCD основания равны 21 и 9, а высота равна 8. Найдите радиус окружности, описанной около этой трапеции. Смотреть решение →
  • Через произвольную точку О, взятую внутри треугольника ABC, проведены прямые DE, FK, MN, параллельные, соответственно, AB, АС, BC, причем F и M лежат на AB, E и К - на BC, N и D - на АС, Доказать, что

    \(\frac{AF}{AB} + \frac{BE}{BC} + \frac{CN}{CA} = 1\)

     Смотреть решение →

  • Основание четырехугольной пирамиды — прямоугольник с диагональю, равной b, и углом αмежду диагоналями. Каждое из боковых ребер образует с основанием угол β. Найти объем пирамиды. Смотреть решение →
  • Найти объем и боковую поверхность правильной шестиугольной пирамиды, если даны боковое ребро l и диаметр d круга, вписанного в основание пирамиды. Смотреть решение →
  • Вычислите объём правильной треугольной пирамиды, если радиус вписанной в основание окружности равен √3, а боковые ребра пирамиды равны 6. Смотреть решение →