Теория
Построим угол и на его сторонах отложим от вершины А равные отрезки АВ = АС (рис. 239).
Через точку В проведём прямую, параллельную АС; через точку С проведём прямую, параллельную АВ. Точку пересечения этих прямых обозначим через D. Мы получили...
Читать далее →
Задачи
В равнобедренной трапеции ABCD основания равны 21 и 9, а высота равна 8. Найдите радиус окружности, описанной около этой трапеции. Смотреть решение →
Доказать, что медиана треугольника меньше полусуммы сторон, ее заключающих, и больше разности между этой полусуммой и половиной третьей стороны. Смотреть решение →
Боковые стороны трапеции равны 3 и 5. Известно, что в трапецию можно вписать окружность. Средняя линия трапеции делит ее на две части, отношение площадей которых равно 5/11. Найти основания трапеции Смотреть решение →
В конус вписан шар. Поверхность шара относится к площади основания конуса как 4:3. Найти угол при вершине конуса. Смотреть решение →
Данный треугольник ABC пересечь прямой DE, параллельной ВС, так, чтобы площадь треугольника BDE равнялась заданной величине k2. При каком соотношении между k2и площадью треугольника ABC задача разрешима и сколько она имеет решений?
Смотреть решение →
Доказать, что в прямоугольном треугольнике биссектриса прямого угла делит пополам угол между медианой и высотой, опущенными на гипотенузу. Смотреть решение →
К окружности проведены две касательные, которые пересекают в точках А и В прямую, проходящую через центр окружности, и образуют с этой прямой равные углы. Доказать, что любая (подвижная) касательная отсекает на данных (неподвижных) касательных отрезки АС и BD, произведение которых постоянно. Смотреть решение →
В равнобедренном треугольнике основание равно 30 см, а высота 20 см. Определить высоту, опущенную на боковую сторону. Смотреть решение →
Прямая, параллельная основанию треугольника, площадь которого равна S, отсекает от него треугольник с площадью, равной q. Определить площадь четырехугольника, три вершины которого совпадают с вершинами меньшего треугольника, а четвертая лежит на основании большего треугольника. Смотреть решение →
Вершина А правильной призмы АВСА1В1С1 совпадает с вершиной конуса, вершины В и С лежат на боковой поверхности этого конуса, а вершины В1 и С1 на окружности его основания. Найти отношение объемов конуса и призмы, если |АА1| = 2,4|АВ|. Смотреть решение →