Теория
Пусть нам нужно узнать, чему равняется площадь трапеции АВСD (черт. 278). Проведём в ней диагональ DВ. Трапеция разобьётся на два треугольника АDВ и DСВ. Обозначим высоту трапеции и треугольников через h, а площади треугольников АDВ и DВС - через S1,... Читать далее →


Задачи
  • Дана плоскость Р и две точки А и В вне ее. Через А и В проводятся всевозможные сферы, касающиеся плоскости Р. Найти геометрическое место точек касания. Смотреть решение →
  • Правильный тетраэдр объема V повернут около прямой, соединяющей середины его скрещивающихся ребер, на угол α. Найти объем общей части данного тетраэдра и повернутого (0 < α < π) Смотреть решение →
  • Полная поверхность правильной четырехугольной пирамиды равна S, а плоский угол боковой грани при вершине равен α. Найти высоту пирамиды. Смотреть решение →
  • В параллелепипеде длины трех ребер, выходящих из общей вершины, равны соответственно а, b и с. Ребра а и b взаимно перпендикулярны, а ребро с образует с каждым из них угол α. Определить объем параллелепипеда, боковую поверхность его и угол между ребром с и плоскостью основания. (При каких значениях угла α задача возможна?) Смотреть решение →
  • В правильной четырехугольной усеченной пирамиде стороны верхнего и нижнего оснований равны соответственно а и 3а и боковые грани наклонены к плоскости нижнего основания под углом α. Через сторону верхнего основания проведена плоскость параллельно противоположной боковой грани. Определить объем четырехугольной призмы, отсеченной от данной усеченной пирамиды, и полную поверхность остальной части ее. Смотреть решение →
  • Периметр прямоугольного треугольника равен 132, а сумма квадратов сторон треугольника — 6050. Найти стороны. Смотреть решение →
  • Определить угол ромба, зная его площадь Q и площадь вписанного в него круга S. Смотреть решение →
  • Четыре шара, центры которых не лежат в одной плоскости, касаются попарно друг друга. Каждые два из них определяют плоскость, перпендикулярную к их линии центров и касающуюся обоих шаров. Доказать, что возникающие таким образом шесть плоскостей имеют общую точку. Смотреть решение →
  • Через некоторую точку диагонали куба с ребром а перпендикулярно к этой диагонали проведена плоскость. 1) Выяснить, какая фигура получается в сечении этой плоскости с гранями куба. 2) Найти длины отрезков, получающихся в сечении плоскости с гранями куба, в зависимости от расстояния х секущей плоскости от центра симметрии куба О. Смотреть решение →
  • На ребре двугранного угла дан отрезок АВ. В одной из граней дана точка М, в которой прямая, проведенная из точки А под углом α к АВ, пересекает прямую, проведенную из В перпендикулярно к АВ. Определить величину двугранного угла, если прямая AM наклонена ко второй грани двугранного угла под углом βСмотреть решение →