Теория
Определения. Часть плоскости, лежащая по одну сторону от какой-либо прямой, лежащей в этой плоскости, называется полуплоскостью. Фигура, образованная двумя полуплоскостями (P и Q, черт. 26), исходящими из одной прямой (AB), называется двугранным углом. Прямая AB называется ребром, а полуплоскости Р... Читать далее →


Задачи
  • Определить объем правильной усеченной четырехугольной пирамиды, если сторона большего основания равна а, сторона меньшего основания равна b, а острый угол боковой грани равен αСмотреть решение →
  • Внутри квадрата СО стороной а расположены четыре равных круга; каждый из них касается двух смежных сторон квадрата и двух кругов (из числа остальных трех). Найти площадь криволинейного четырехугольника, образованного дугами касающихся кругов (вершинами служат точки касания кругов). Смотреть решение →
  • Основанием пирамиды служит прямоугольный треугольник, а высота ее проходит через точку пересечения гипотенузы с биссектрисой прямого угла основания. Боковое ребро, проходящее через вершину прямого угла, наклонено к плоскости основания под углом α. Определить объем пирамиды и углы наклона боковых граней к плоскости основания, если биссектриса прямого угла основания равна m и образует с гипотенузой угол 45° + αСмотреть решение →
  • Две окружности касаются друг друга внутренним образом в точке А. Отрезок AB является диаметром большей окружности. Хорда BK большей окружности касается меньшей окружности в точке С. Доказать, что АС является биссектрисой треугольника ABK.  Смотреть решение →
  • Дана правильная треугольная пирамида SABC (S - ее вершина). Ребро SC этой пирамиды совпадает с боковым ребром правильной треугольной призмы A1B1CA2B2S (А1А2, В1В2 и CS - боковые ребра, а А1В1С- одно из оснований). Вершины А1 и В1 лежат в плоскости грани SAB пирамиды. Какую долю от объема всей пирамиды составляет объем части пирамиды, лежащей внутри призмы, если отношение длины бокового ребра пирамиды к стороне ее основания равно \(\frac{2}{\sqrtЗ}\)? Смотреть решение →
  • Полная поверхность прямого кругового конуса в n раз больше поверхности вписанного в него шара. Под каким углом образующие этого конуса наклонены к плоскости его основания? Смотреть решение →
  • В круг вписан правильный 2n-угольник; вокруг этого же круга описан правильный n-угольник. Площади этих многоугольников отличаются друг от друга на Р. Определить радиус круга. Смотреть решение →
  • Доказать, что, по крайней мере, одно из оснований перпендикуляров, опущенных из произвольно взятой внутренней точки выпуклого многоугольника на его стороны, лежит на самой стороне, а не на ее продолжении,  Смотреть решение →
  • Основанием пирамиды служит равнобедренный треугольник ABC, где АВ=АС. Высота пирамиды SO проходит через середину высоты AD основания. Через сторону ВС проведена плоскость перпендикулярно к боковому ребру AS, образующая с основанием угол α. Определить объем пирамиды, отсеченной от данной и имеющей с ней общую вершину S, если объем другой отсеченной части ее равен V. Смотреть решение →
  • Рассматриваются два треугольника ABC и А1В1С1, которые лежат в непараллельных плоскостях и имеют попарно непараллельные стороны. При этом прямые, соединяющие соответственные вершины, пересекаются в одной точке О. Доказать, что продолжения соответственных сторон треугольников попарно пересекаются и точки их пересечения лежат на одной прямой. Смотреть решение →