Теория
Теорема 1. Площадь сферы радиуса R вычисляется по формуле
S = 4πR2 (1)
Сфера радиуса R может быть получена вращением вокруг оси Ох полуокружности, заданной уравнением
$$ y=\sqrt{R^2 - x^2}, \;\; x \in [- R; R] $$
Тогда по формуле для площади поверхности вращения...
Читать далее →
Задачи
Боковая поверхность правильной четырехугольной пирамиды содержит S см2, высота пирамиды Н см. Найти сторону основания пирамиды. Смотреть решение →
Основание AB трапеции ABCD вдвое длиннее основания CD и вдвое длиннее боковой стороны AD. Длина диагонали AC равна a, а длина боковой стороны BC равна b. Найти площадь трапеции. Смотреть решение →
Основанием пирамиды служит квадрат. Две противоположные грани — равнобедренные треугольники, одна из них образует с основанием внутренний угол β, а другая — внешний острый угол α. Высота пирамиды равна Н. Найти объем пирамиды и углы, образованные двумя другими боковыми гранями с плоскостью основания. Смотреть решение →
Выпуклый четырехугольник ABCD описан около окружности с центром в точке O, при этом AO = OC = 1, BO = OD = 2. Найти периметр четырехугольника ABCD. Смотреть решение →
К двум окружностям радиусов R и r, находящимся в положении внешнего касания, проведены их общие внешние касательные. Определить площадь трапеции, ограниченной этими касательными и хордами, соединяющими точки касания. Смотреть решение →
В основании треугольной пирамиды SABC лежит правильный треугольник АВС со стороной a, ребро равно b. Найти объем пирамиды, если известно, что боковые грани пирамиды равновелики. Смотреть решение →
Даны две параллельные прямые и точка А между ними. Найти стороны прямоугольного треугольника, вершина прямого угла которого лежит в точке А, а вершины острых углов — на заданных параллельных прямых, зная, что площадь треугольника равна заданной величине k2. Смотреть решение →
Непересекающиеся диагонали двух смежных боковых граней прямоугольного параллелепипеда наклонены к плоскости его основания под углами α и β . Найти угол между этими диагоналями. Смотреть решение →
Сторона основания правильной треугольной пирамиды равна а. Сечение, делящее угол между боковыми гранями пополам, есть прямоугольный треугольник. Определить объем пирамиды и угол между боковой гранью ее и плоскостью основания. Смотреть решение →
В конус вписан шар радиуса r. Найти объем конуса, если известно, что плоскость, касающаяся шара и перпендикулярная к одной из образующих конуса, отстоит от вершины конуса на расстоянии d. Смотреть решение →