Теория
Пусть дана некоторая точка M0 и ненулевой вектор n. Через точку M0 можно провести только одну плоскость р перпендикулярную вектору n (рис. 201).
Выведем уравнение плоскости р. Пусть М - произвольная точка пространства. Очевидно, что точка М принадлежит плоскости р тогда...
Читать далее →
Задачи
Три окружности радиусов r, r1 и R касаются попарно внешним образом. Найти длину хорды, отсекаемой третьей окружностью от общей внутренней касательной первых двух окружностей. Смотреть решение →
Все плоские углы трехгранного угла NKLM (N - вершина) прямые. На грани LNM взята точка Р на расстоянии 2 от вершины N и на расстоянии 1 от ребра MN. Из некоторой точки S, расположенной внутри трехгранного угла NKLM, в точку Р направлен луч света. Луч образует угол π/4 с плоскостью MNK и равные углы с ребрами KN и MN. Луч зеркально отражается от граней угла NKLM сначала в точке Р, затем - в точке Q, затем - в точке R. Найти сумму длин отрезков PQ и QR. Смотреть решение →
Над плоским потолком зала, имеющего форму квадрата со стороной а, сделана крыша, построенная следующим образом: каждая пара смежных вершин квадрата, образующего потолок зала, соединена прямыми с серединой противолежащей стороны, на каждом из получившихся четырех треугольников, как на основании, построена пирамида, вершина которой проектируется в середину соответствующей стороны квадрата. Расположенные выше других части граней этих четырех пирамид образуют крышу. Найти объем чердака (т. е. пространства между потолком и крышей), если высота каждой из пирамид равна h. Смотреть решение →
В правильной шестиугольной пирамиде через центр основания проведено сечение параллельно боковой грани. Найти отношение площади сечения к площади боковой грани. Смотреть решение →
Около шара описан усеченный конус. Полная поверхность этого конуса S. Второй шар касается боковой поверхности конуса по окружности основания конуса. Найти объем усеченного конуса, если известно, что часть поверхности второго шара, находящаяся внутри первого имеет площадь Q. Смотреть решение →
Периметр равнобочной трапеции, описанной около круга, равен p. Найти радиус этого круга, если известно, что острый угол при основании трапеции равен α Смотреть решение →
В треугольнике ABC AB = BC, AC = 5, cosACB = 0,8. Найдите высоту CH Смотреть решение →
В основании треугольной пирамиды SABC лежит правильный треугольник АВС со стороной a, ребро равно b. Найти объем пирамиды, если известно, что боковые грани пирамиды равновелики. Смотреть решение →
В правильной четырехугольной призме проведены два параллельных сечения: одно проходит через середины двух смежных сторон основания и середину оси, другое делит ось в отношении 1:3. Зная, что площадь первого сечения равна S, найти площадь второго Смотреть решение →
Доказать, что во всяком треугольнике биссектриса лежит между медианой и высотой, проведенными из той же вершины. Смотреть решение →