Теория
1. Объём прямой треугольной призмы.Пусть требуется найти объём прямой треугольной призмы, площадь основания которой равна S, а высота равна h = AA’ = BB’ = CC’ (рис. 306). Начертим отдельно основание призмы, т. е. треугольник АBС (рис. 307, а), и достроим... Читать далее →


Задачи
  • Внутри данной окружности фиксирована точка А, не совпадающая с центром. Через А проведена произвольная хорда и в ее концах - касательные к окружности, пересекающиеся в точке М. Найти геометрическое место точек М. Смотреть решение →
  • В правильной треугольной пирамиде SABC (S - вершина) точка Е - середина апофемы грани SBC, а точки F, L и М лежат на ребрах АВ, АС и SC соответственно, причем |AL| = 1/10|AC|. Известно, что EFLM - равнобедренная трапеция и длина ее основания EF равна √7. Найти объем пирамиды. Смотреть решение →
  • В тетраэдре ABCD дано ∠АВС = ∠BAD = 90°, |А В| = a, |DC| = b, угол между ребрами AD и ВС равен α. Найти радиус описанного шара. Смотреть решение →
  • Определить угол наклона боковой грани правильной пятиугольной пирамиды к плоскости основания, если площадь основания пирамиды равна S, а боковой поверхности равна σСмотреть решение →
  • Тупоугольный треугольник, острые углы которого α и β и меньшая высота равна h , вращается около стороны, противолежащей углу β. Найти поверхность тела вращения. Смотреть решение →
  • В треугольнике АВС АL – биссектриса угла А.Через точку А проводят прямую перпендикулярно АL и из вершины В опускают на эту прямую перпендикуляр ВВ1. Доказать, что периметр треугольника ВВ1С больше периметра треугольника АВС. Смотреть решение →
  • Найти третью сторону треугольника, если даны две стороны его а и b и известно, что медианы, соответствующие этим сторонам, пересекаются под прямым углом.
    При каких условиях такой треугольник существует? Смотреть решение →

  • Дан усеченный конус, боковая поверхность которого равна площади круга, имеющего своим радиусом образующую усеченного конуса. Доказать, что в данный конус можно вписать шар. Смотреть решение →
  • Доказать, что угол треугольника будет острым, прямым или тупым, смотря по тому, будет ли противоположная сторона меньше, равна или больше удвоенной соответствующей медианы. Смотреть решение →
  • Найти наибольшее и наименьшее значения функции

    у = 2 sin2 х + 4 cos2 х + 6 sin х cos х Смотреть решение →