Теория
Раздел геометрии, в котором изучаются фигуры, расположенные в пространстве, называется стереометрией. Основными понятиями стереометрии являются точка, прямая и плоскость. Пространство состоит из бесконечного множества точек. Прямые и плоскости состоят из бесконечного множества точек пространства и не совпадают со всем пространством. Сформулируем основные... Читать далее →


Задачи
  • Внутри прямого кругового конуса расположен куб так, что одно ребро куба лежит на диаметре основания конуса, вершины куба, не принадлежащие этому ребру, лежат на боковой поверхности конуса, центр куба лежит на высоте конуса. Найти отношение объема конуса к объему куба. Смотреть решение →
  • Доказать, что для объема произвольного тетраэдра V справедлива формула \(V = \frac{1}{6}abd sin\phi\), где а и b — два противоположных ребра тетраэдра, d — расстояние между ними, \(\phi\) — угол между ними. Смотреть решение →
  • Ребро правильного тетраэдра равно a. Плоскость P проходит через вершину В и середины ребер АС и AD. Шар касается прямых AB, АС, AD и той части плоскости P, которая заключена внутри тетраэдра. Найти радиус шара. Смотреть решение →
  • В точке А, находящейся на расстоянии а от центра круглого биллиарда радиуса R, лежит упругий шарик, размерами которого можно пренебречь. В какую точку В борта нужно его направить, чтобы, дважды отразившись от борта, он снова вернулся в точку А?  Смотреть решение →
  • По основаниям а и b и боковым сторонам с и d трапеции определить ее диагонали m и n.  Смотреть решение →
  • В правильной четырехугольной призме проведены два параллельных сечения: одно проходит через середины двух смежных сторон основания и середину оси, другое делит ось в отношении 1:3. Зная, что площадь первого сечения равна S, найти площадь второго  Смотреть решение →
  • Через некоторую точку, взятую внутри треугольника, проведены три прямые, соответственно параллельные его сторонам. Эти прямые разделяют площадь треугольника на шесть частей, три из которых - треугольники с площадями, равными S1, S2, S3. Найти площадь данного треугольника. Смотреть решение →
  • Даны точки М1(2; -1) и М2(4; 5). Написать уравнение прямой, проходящей через точку М1 перпендикулярно вектору \(\overrightarrow{M_{1}M_{2}}\). Смотреть решение →
  • Стороны деформирующегося многоугольника остаются соответственно параллельными заданным направлениям, в то время как все вершины, кроме одной, скользят по заданным прямым. Найти геометрическое место положений последней вершины. Смотреть решение →
  • В основании прямой призмы ABCA1B1C1 лежит прямоугольный треугольник ABC с углом β при вершине В (β < 45°). Разность между площадями ее боковых граней, проходящих через катеты ВС и АС, равна S. Найти площадь сечения призмы плоскостью, образующей с плоскостью основания угол φ и проходящей через три точки: вершину В1 угла β верхнего основания, середину бокового ребра АА1 и точку D, расположенную на плоскости основания симметрично с вершиной В относительно катета АС. Смотреть решение →