Теория
Пусть l - произвольная прямая (рис. 102). Обозначим через p расстояние от начала координат до прямой l, а через φ - угол между осью Ох и нормальным вектором прямой l. Угол будем отсчитывать от оси Оx в направлении, противоположном движению... Читать далее →


Задачи
  • Вычислить площадь трапеции, параллельные стороны которой содержат 16 см и 44 см, а непараллельные 17 см и 25 см.  Смотреть решение →
  • Сторона основания правильной треугольной пирамиды равна а. Сечение, делящее угол между боковыми гранями пополам, есть прямоугольный треугольник. Определить объем пирамиды и угол между боковой гранью ее и плоскостью основания. Смотреть решение →
  • При каких целых значениях n функция

    cos nx sin 5/n х

    имеет период 3π *)?

    *) Функция f (х) называется периодической, если существует число Т =/= 0 такое, что для всех допустимых значений х выполнено равенство f(x + T) = f (x). Число Т при этом называется периодом функции.

     Смотреть решение →

  • В точках А и В прямой, по одну сторону от нее, восставлены два перпендикуляра АА1 = а и ВВ1 = b. Доказать, что при сохранении величин а и b точка пересечения прямых АВ1 и А1В будет находиться на одном и том же расстоянии от прямой АВ независимо от положения точек А и В.  Смотреть решение →
  • Найти геометрическое место точек, для которых сумма расстояний до двух данных прямых m и l равна длине a данного отрезка. Разобрать случаи пересекающихся и параллельных прямых. Смотреть решение →
  • Площадь треугольника ABC равна S, сторона АС = b и ∠CAB = α. Найти объем тела, полученного при вращении треугольника ABC около стороны АВ. Смотреть решение →
  • Центры трех сфер, радиусы которых равны 3, 4 и 6, расположены в вершинах правильного треугольника со стороной 11. Сколько существует плоскостей, касающихся одновременно всех трех сфер? Смотреть решение →
  • Определить площадь круга, вписанного в прямоугольный треугольник, если высота, опущенная на гипотенузу, делит ее на отрезки, равные 25,6 см и 14,4 см. Смотреть решение →
  • Дан конус объема V, образующая которого наклонена к плоскости основания под углом α. На какой высоте надо провести плоскость, перпендикулярную к оси конуса, чтобы сечение конуса разделило пополам его боковую поверхность? Тот же вопрос для полной поверхности. Смотреть решение →
  • Основанием пирамиды служит прямоугольник. Одно боковое ребро перпендикулярно к плоскости основания, а две боковые грани наклонены к ней под углами α и β. Определить боковую поверхность пирамиды, если высота ее равна Н. Смотреть решение →