Теория
Площадь боковой поверхности для цилиндра и конуса можно определить с помощью площади развертки. Однако не для любой поверхности такой способ пригоден. Например, нельзя «развернуть» на плоскость сферу. Определим в общем случае площадь поверхности вращения и приведем формулу для ее вычисления. Пусть... Читать далее →


Задачи
  • Конус с высотой Н и углом между образующей и высотой, равным α, надо рассечь сферической поверхностью с центром в вершине конуса так, чтобы объем конуса оказался разделенным пополам. Найти радиус этой сферы. Смотреть решение →
  • В пирамиде SABC произведения длин ребер каждой из четырех граней равны одному и тому же числу. Длина высоты пирамиды, опущенной из S на грань АВС, равна \(2\sqrt{\frac{102}{55}}\), а величина угла CAB равна \(arccos(\frac{1}{6}\sqrt{\frac{17}{2}})\). Найти объем пирамиды SABC, если |SA|2 + |SB|2 - 5|SC|2 = 60 Смотреть решение →
  • В треугольнике АВС АL – биссектриса угла А.Через точку А проводят прямую перпендикулярно АL и из вершины В опускают на эту прямую перпендикуляр ВВ1. Доказать, что периметр треугольника ВВ1С больше периметра треугольника АВС. Смотреть решение →
  • Показать, что площадь любого треугольного сечения произвольной треугольной пирамиды не превосходит площади хотя бы одной из ее граней. Смотреть решение →
  • Из середины высоты правильной четырехугольной пирамиды опущен перпендикуляр на боковое ребро, равный h, и перпендикуляр на боковую грань, равный b. Найти объем пирамиды. Смотреть решение →
  • Над плоским потолком зала, имеющего форму квадрата со стороной а, сделана крыша, построенная следующим образом: каждая пара смежных вершин квадрата, образующего потолок зала, соединена прямыми с серединой противолежащей стороны, на каждом из получившихся четырех треугольников, как на основании, построена пирамида, вершина которой проектируется в середину соответствующей стороны квадрата. Расположенные выше других части граней этих четырех пирамид образуют крышу. Найти объем чердака (т. е. пространства между потолком и крышей), если высота каждой из пирамид равна h.  Смотреть решение →
  • Решить уравнение cos 4x cos 2x = cos 5x cos x Смотреть решение →
  • В правильной треугольной пирамиде SABC плоский угол при вершине равен α, а кратчайшее расстояние между боковым ребром и противоположной стороной основания равно d. Найти объем этой пирамиды.  Смотреть решение →
  • Объем тетраэдра ABCD равен 5. Через середины ребер AD и BC проведена плоскость, пересекающая ребро CD в точке M. При этом отношение длины отрезка DM к длине отрезка СМ равно 2/3. Вычислить площадь сечения тетраэдра указанной плоскостью, если расстояние от нее до вершины А равно 1. Смотреть решение →
  • Доказать, что площадь части поверхности сферы, заключенной между двумя параллельными плоскостями, пересекающими сферу, можно найти по формуле \(S = 2\pi Rh\), где R — радиус сферы, h — расстояние между плоскостями. Смотреть решение →