Теория
Рассмотрим два прямоугольных треугольника с острыми углами в 60° и 30° (рис. 364). Стороны второго треугольника по сравнению с первым уменьшены в два раза: \(\frac{AB}{A’B’}\) = 2; \(\frac{AC}{A’C’}\) = 2; \(\frac{BC}{B’C’}\) = 2. У этих треугольников углы попарно равны. Стороны, лежащие против равных... Читать далее →


Задачи
  • Решить уравнение tg 3х - tg x = 0 Смотреть решение →
  • Основанием прямого параллелепипеда служит ромб с острым углом α. Под каким углом к основанию нужно пересечь этот параллелепипед плоскостью, чтобы в сечении получился квадрат с вершинами на боковых ребрах? Смотреть решение →
  • Доказать, что перпендикуляры к хорде, восставленные в ее концах, пересекают произвольный диаметр в точках, которые равно удалены от центра Смотреть решение →
  • Плоскость, пересекающая поверхность треугольной пирамиды, делит медиану граней, выходящие из одной вершины, в отношениях 2:1, 1:2, 4:1 соответственно (считая от вершины). В каком отношении эта плоскость делит объем пирамиды? Смотреть решение →
  • Доказать, что если в произвольном четырехугольнике ABCD пронести внутренние биссектрисы, то четыре точки пересечения биссектрис углов А и С с биссектрисами углов В и D лежат на окружности.  Смотреть решение →
  • Объем конуса V. Высота его разделена на три равные части и через точки деления проведены плоскости параллельно основанию. Найти объем средней части. Смотреть решение →
  • Дана правильная треугольная пирамида SABC (S - ее вершина). Ребро SC этой пирамиды совпадает с боковым ребром правильной треугольной призмы A1B1CA2B2S (А1А2, В1В2 и CS - боковые ребра, а А1В1С- одно из оснований). Вершины А1 и В1 лежат в плоскости грани SAB пирамиды. Какую долю от объема всей пирамиды составляет объем части пирамиды, лежащей внутри призмы, если отношение длины бокового ребра пирамиды к стороне ее основания равно \(\frac{2}{\sqrtЗ}\)? Смотреть решение →
  • Дана правильная n-угольная призма. Площадь основания равна S. Две плоскости пересекают все боковые ребра призмы таким образом, что объем части призмы между плоскостями равен V. Найти сумму длин отрезков боковых ребер призмы, заключенных между плоскостями, если известно, что плоскости не имеют общих точек внутри призмы. Смотреть решение →
  • Доказать, что квадрат биссектрисы, проведенной через вершину произвольного треугольника, равен произведению боковых сторон без произведения отрезков основания. Выяснить смысл указанного равенства в случае равнобедренного треугольника. Смотреть решение →
  • Доказать, что объем тела, получающегося при вращении кругового сегмента вокруг диаметра, его не пересекающего, можно вычислять по формуле \(V=\frac{1}{6}\pi a^2h\), где a - длина хорды этого сегмента, a h - проекция этой хорды на диаметр. Смотреть решение →