Теория
Построим угол и на его сторонах отложим от вершины А равные отрезки АВ = АС (рис. 239). Через точку В проведём прямую, параллельную АС; через точку С проведём прямую, параллельную АВ. Точку пересечения этих прямых обозначим через D. Мы получили... Читать далее →


Задачи
  • В тетраэдре три двугранных угла прямые. Один из отрезков, соединяющих середины противоположных ребер тетраэдра, равен a, а другой b (b > a). Найти длину наибольшего ребра тетраэдра. Смотреть решение →
  • В правильной четырехугольной усеченной пирамиде стороны верхнего и нижнего оснований равны соответственно а и 3а и боковые грани наклонены к плоскости нижнего основания под углом α. Через сторону верхнего основания проведена плоскость параллельно противоположной боковой грани. Определить объем четырехугольной призмы, отсеченной от данной усеченной пирамиды, и полную поверхность остальной части ее. Смотреть решение →
  • Основанием пирамиды служит равнобедренный треугольник с углом αпри основании. Каждый из двугранных углов при основании равен φ. Расстояние от центра круга, вписанного в основание пирамиды, до середины высоты боковой грани равно d. Определить полную поверхность пирамиды. Смотреть решение →
  • Тупоугольный треугольник, острые углы которого α и β и меньшая высота равна h , вращается около стороны, противолежащей углу β. Найти поверхность тела вращения. Смотреть решение →
  • В ромбе высота, проведенная из вершины тупого угла, делит сторону ромба пополам. Найдите периметр и высоту ромба, если меньшая диагональ его равна 7 Смотреть решение →
  • На плоскости даны два отрезка АВ и CD. Найти геометрическое место точек М, обладающих тем свойством, что сумма площадей треугольников АМВ и CMD равна некоторой постоянной a2Смотреть решение →
  • Внутри угла 60° расположена точка на расстояниях а и bот его сторон. Найти расстояние этой точки до вершины данного угла. Смотреть решение →
  • Некоторая точка О плоскости соединена с вершинами параллелограмма ABCD. Доказать, что площадь треугольника АОС равна сумме или разности площадей двух смежных треугольников, образованных двумя из прямых ОА, ОВ, ОС, OD и соответствующей стороной параллелограмма. Разобрать случаи, когда точка О находится внутри и вне параллелограмма.  Смотреть решение →
  • В треугольной пирамиде две боковые грани суть равнобедренные прямоугольные треугольники, гипотенузы которых равны b и образуют между собой угол α. Определить объем пирамиды. Смотреть решение →
  • В трехгранном угле даны три плоских угла в 45°, 60° и 45°. Определить двугранный угол, заключенный между теми двумя гранями, которые содержат плоские углы по 45°. Смотреть решение →