Теория
1. Определение параллелограмма. Если пару параллельных прямых пересечём другой парой параллельных прямых, то получим четырёхугольник, у которого противоположные стороны попарно параллельны. В четырёхугольниках ABDС и ЕFNМ (рис. 224) ВD || АС и AB || СD; ЕF || МN и ЕМ || FN. Четырёхугольник,... Читать далее →


Задачи
  • Дан четырехугольник ABCD такой, что \(\overrightarrow{AD}\) = \(\overrightarrow{AC}\) - \(\overrightarrow{AB}\).
    Доказать, что ABCD - параллелограмм. Смотреть решение →

  • Найти третью сторону треугольника, если даны две стороны его а и b и известно, что медианы, соответствующие этим сторонам, пересекаются под прямым углом.
    При каких условиях такой треугольник существует? Смотреть решение →

  • В шаре радиуса R проведен диаметр АВ. Две прямые касаются шара в точках А и В и образуют между собой угол α (α < 90°). На этих прямых взяты точки С и D так, что CD также касается шара и угол между АВ и CD равен φ (φ < 90°). Найти объем тетраэдра ABCD. Смотреть решение →
  • Основанием прямоугольного параллелепипеда служит прямоугольник, вписанный в круг радиуса R, причем меньшая сторона этого прямоугольника стягивает дугу окружности, содержащую (2α)°. Найти объем этого параллелепипеда, зная его боковую поверхность S. Смотреть решение →
  • Определить радиусы двух внешне касающихся кругов, если расстояние между их центрами равно d, а угол между общими внешними касательными равен φСмотреть решение →
  • Основанием пирамиды служит прямоугольник с острым углом α между диагоналями, а боковые ребра образуют с плоскостью основания угол φ. Определить объем этой пирамиды, если радиус шара, описанного около нее, равен R. Смотреть решение →
  • Периметр прямоугольного треугольника равен 132, а сумма квадратов сторон треугольника — 6050. Найти стороны. Смотреть решение →
  • Выразить диагонали вписанного четырехугольника через его стороны. Получить отсюда теорему Птолемея: произведение диагоналей вписанного четырехугольника равно сумме произведений противоположных сторон. Смотреть решение →
  • В равнобедренном треугольнике с основанием, равным 4 см, и высотой, равной 6 см, на боковой стороне, как на диаметре, построена полуокружность. Точки пересечения ее с основанием и боковой стороной соединены прямой. Определить площадь получившегося четырехугольника, вписанного в полукруг.  Смотреть решение →
  • Доказать, что если диаметр полукруга разделить на две произвольные части и на каждой из них описать полукруг внутри данного полукруга, то площадь, заключенная между тремя полуокружностями, будет равна площади круга, диаметр которого равен длине перпендикуляра, восставленного внутри исходного полукруга из точки деления его диаметра.  Смотреть решение →