Теория
Выведенные нами соотношения дают возможность решать прямоугольные треугольники, т.е. по некоторым данным элементам треугольника находить все остальные.Рассмотрим несколько примеров. 1. Даны гипотенуза прямоугольного треугольника и один из его острых углов. Найти катеты этого треугольника и второй острый угол. Пусть гипотенуза... Читать далее →


Задачи
  • Из точки, взятой на ребре правильной треугольной призмы со стороной основания а, проведены две плоскости. Одна проходит через сторону нижнего основания призмы под углом α к последнему, а другая — через параллельную ей сторону верхнего основания под углом β к нему. Определить объем призмы и сумму площадей полученных сечений. Смотреть решение →
  • Из вершины S правильной четырехугольной пирамиды на основание опущен перпендикуляр SB. Из середины О отрезка SB опущены перпендикуляр ОМ длиной h на боковое ребро и перпендикуляр ОK длиной b на боковую грань. Найти объем пирамиды.  Смотреть решение →
  • Около данного прямоугольника описать новый прямоугольник, который имел бы заданную площадь m2. При каком m задача разрешима? Смотреть решение →
  • В шар вписаны два одинаковых конуса, оси которых совпадают, а вершины находятся в противоположных концах диаметра шара. Найти отношение объема общей части этих двух конусов к объему шара, зная, что отношение высоты конуса h к радиусу шара R равно kСмотреть решение →
  • Основанием пирамиды служит многоугольник, описанный около круга радиуса r ; периметр многоугольника равен 2р, боковые грани пирамиды наклонены к плоскости основания под углом φ. Найти объем пирамиды. Смотреть решение →
  • Найти геометрическое место оснований перпендикуляров, опущенных из данной точки пространства на прямые, лежащие в заданной плоскости и пересекающиеся в одной точке. Смотреть решение →
  • В основании прямой призмы ABCA1B1C1 лежит равнобедренный треугольник ABC с углом αпри основании ВС. Боковая поверхность призмы равна S. Найти площадь сечения призмы плоскостью, проходящей через диагональ боковой грани BCC1B1 параллельно высоте AD основания призмы и образующей с плоскостью основания угол βСмотреть решение →
  • Хорда, перпендикулярная к диаметру, делит его в отношении m :n. Определить каждую из дуг ( вдуговых единицах.), на которые разделится окружность хордой и диаметром. Смотреть решение →
  • В правильную n-угольную пирамиду со стороной основания а и боковым ребром b вписан шар. Найти его радиус. Смотреть решение →
  • Около правильной треугольной призмы описан цилиндр. Высота цилиндра равна 5, а радиус его основания R удовлетворяет уравнению \(R^2 + R – 6 = 0\). Найдите объём призмы.  Смотреть решение →