Теория
Определение. Две плоскости называются взаимно перпендикулярными, если, пересекаясь, они образуют прямые двугранные углы. Теoрема (выражающая признак перпендикулярности двух плоскостей). Если плоскость (Р, черт. 31) проходит через перпендикуляр (АВ) к другой плоскости (Q), то она перпендикулярна к этой плоскости. Пусть DE... Читать далее →


Задачи
  • Четыре шара, центры которых не лежат в одной плоскости, касаются попарно друг друга. Каждые два из них определяют плоскость, перпендикулярную к их линии центров и касающуюся обоих шаров. Доказать, что возникающие таким образом шесть плоскостей имеют общую точку. Смотреть решение →
  • Определить объем правильной четырехугольной пирамиды, зная угол αее бокового ребра с плоскостью основания и площадь S ее диагонального сечения. Найти также угол, образуемый боковой гранью с плоскостью основания. Смотреть решение →
  • Дан куб \( ABCDA_1B_1C_1D_1\) с ребром a, K - середина ребра \(DD_1\). Найти угол и расстояние между прямыми CK и A1D. Смотреть решение →
  • Доказать, что если tg α = 1/7, sin β = 1/10, то

    α + 2β = 45° (α и β- углы первой четверти). Смотреть решение →

  • Основанием пирамиды является равнобедренный треугольник с боковой стороной аи углом αпри основании (α > 45°). Боковые ребра наклонены к плоскости основания под углом β. В этой пирамиде проведена плоскость через ее высоту и вершину одного из углов α. Найти площадь сечения. Смотреть решение →
  • Большее основание трапеции а, меньшее b; углы при большем основании 30° и 45°. Найти площадь трапеции. Смотреть решение →
  • На высоте конуса, равной Н, как на диаметре, описан шар. Определить объем части шара, лежащей вне конуса, если угол между образующей и высотой равен αСмотреть решение →
  • n равных конусов имеют общую вершину. Каждый касается двух других по образующей, а все касаются одной плоскости. Найти угол при вершине осевого сечения этих конусов. Смотреть решение →
  • Решить уравнение 2sin2x + cos2x = 3/2 sin2x Смотреть решение →
  • Шар вписан в прямую призму, в основании которой лежит прямоугольный треугольник. В этом треугольнике перпендикуляр длины h, опущенный из вершины прямого угла на гипотенузу, составляет с одним из катетов угол α. Найти объем призмы. Смотреть решение →