Теория
Докажем ряд теорем, устанавливающих зависимость между хордами и их дугами в одной и той же окружности или в равных окружностях.
При этом будем иметь в виду дуги, меньшие полуокружности.
Теорема 1. Равные дуги стягиваются равными хордами.
Пусть дуга АВ равна дуге СК. Требуется...
Читать далее →
Задачи
Диагонали трапеции ABCD пересекаются в точке E. Найти площадь треугольника BCE, если длины оснований трапеции AB = 30, DC = 24, боковой стороны AD = 3 и угол DAB равен 60° Смотреть решение →
Основанием пирамиды является прямоугольный треугольник с катетами 6 и 8. Вершина пирамиды удалена от плоскости ее основания на расстояние, равное 24, и проектируется на эту плоскость в точку, лежащую внутри основания. Найти ребро куба, четыре вершины которого лежат в плоскости основания данной пирамиды, а ребра, соединяющие эти вершины, параллельны соответствующим катетам треугольника, лежащего в основании пирамиды. Четыре другие вершины куба лежат на боковых гранях данной пирамиды. Смотреть решение →
На сторонах треугольника ABC построены равносторонние треугольники ABC1, BCA1, CAB1, не перекрывающиеся с \(\Delta\)ABC. Доказать, что прямые AA1, BB1 и CC1 пересекаются в одной точке. Смотреть решение →
Объем конуса V. Высота его разделена на три равные части и через точки деления проведены плоскости параллельно основанию. Найти объем средней части. Смотреть решение →
Вычислить объем правильной треугольной пирамиды, зная, что плоский угол при вершине равен α, а радиус окружности, описанной около боковой грани, равен r.
Смотреть решение →
Биссектриса острого угла равнобедренной трапеции ABCD делит боковую сторону длиной 17 в отношении 6:5, считая от большего основания. Найдите площадь ABCD, если меньшее основание равно 2. Смотреть решение →
Радиус шара, вписанного в четырехугольную правильную пирамиду, равен r. Двугранный угол, образованный двумя соседними боковыми гранями этой пирамиды, равен α. Определить объем пирамиды,.имеющей вершину в центре шара, а вершины основания — в четырех точках касания шара с боковыми гранями данной пирамиды. Смотреть решение →
Дан треугольник с вершинами в точках А(-3; -1), В(2; 7) и С(5; 4). Требуется составить уравнение прямой, проходящей через вершину С перпендикулярно стороне АВ. Смотреть решение →
В правильной n-угольной пирамиде площадь основания равна Q, а высота составляет с каждой из боковых граней угол φ. Определить боковую и полную поверхность пирамиды. Смотреть решение →
Около круга радиуса 2 см описана равнобочная трапеция с площадью 20 см2. Найти стороны трапеции. Смотреть решение →