Теория
Определение: Два многогранника называются подобными, если они имеют равные многогранные углы и, соответственно, подобные грани.
Соответственные элементы подобных многогранников называются сходственными.
Из этого определения следует, что в подобных многогранниках: Двугранные углы соответственно равны и одинаково расположены, потому что многогранные углы равны. Сходственные...
Читать далее →
Задачи
Отрезок АВ единичной длины, являющийся хордой сферы радиуса 1, расположен под углом π/3 к диаметру CD этой сферы. Расстояние от конца С диаметра до ближайшего к нему конца А хорды АВ равно √2. Определить величину отрезка BD. Смотреть решение →
Две окружности радиусов R и r находятся в положении внешнего касания. К этим окружностям проведена общая внешняя касательная, и в образовавшийся при этом криволинейный треугольник вписана окружность. Найти ее радиус. Смотреть решение →
Около круга описана трапеция, боковые стороны которой образуют с большей из параллельных сторон острые углы α и β. Определить радиус круга, если площадь трапеции Q. Смотреть решение →
Центры четырех кругов радиуса rрасположены в вершинах квадрата со стороной а. Найти площадь S общей части всех четырех кругов, заключенной внутри квадрата. Смотреть решение →
Перпендикуляр, опущенный из вершины угла при основании равнобедренного треугольника на противоположную сторону, делит последнюю в отношении m :n. Найти углы треугольника. Смотреть решение →
В правильной усеченной четырехугольной пирамиде даны: диагональ d, двугранный угол αпри нижнем основании и высота H. Найти объем усеченной пирамиды. Смотреть решение →
Стороны треугольника равны 25 см, 24 см и 7 см. Определить радиусы вписанного и описанного кругов. Смотреть решение →
Самая большая диагональ правильной шестиугольной призмы, имеющая длину d, составляет с боковым ребром призмы угол α. Определить объем призмы. Смотреть решение →
Найти значения тригонометрических функций угла φ, если известно, что sin φ = 3/5. Смотреть решение →
В трапеции ABCD сумма углов при основании AD равна π/2. Доказать, что отрезок, соединяющий середины оснований, равен полуразности оснований. Смотреть решение →