Теория
Пусть l - произвольная прямая (рис. 102).
Обозначим через p расстояние от начала координат до прямой l, а через φ - угол между осью Ох и нормальным вектором прямой l. Угол будем отсчитывать от оси Оx в направлении, противоположном движению...
Читать далее →
Задачи
Основанием пирамиды SABCD является ромб с диагоналями AC = a, BD = b. Боковое ребро SA перпендикулярно плоскости основания и равно q. Через точку А и середину К ребра SC проведена плоскость, параллельная диагонали основания BD. Определить площадь сечения. Смотреть решение →
Доказать, что перпендикуляры к хорде, восставленные в ее концах, пересекают произвольный диаметр в точках, которые равно удалены от центра Смотреть решение →
Дан куб \( ABCDA_1B_1C_1D_1\) с ребром a, K - середина ребра \(DD_1\). Найти угол и расстояние между прямыми CK и A1D. Смотреть решение →
Доказать, что для объема произвольного тетраэдра V справедлива формула \(V = \frac{1}{6}abd sin\phi\), где а и b — два противоположных ребра тетраэдра, d — расстояние между ними, \(\phi\) — угол между ними. Смотреть решение →
В основании треугольной пирамиды SABC лежит равнобедренный прямоугольный треугольник \(\Delta АВС\) (∠А = 90°). Углы ∠SAB, ∠SCA, ∠SAC, ∠SBA (в указанном порядке) составляют арифметическую прогрессию, разность которой отлична от нуля. Площади граней SAB, АВС и SAC составляют геометрическую прогрессию. Найти углы, составляющие прогрессию. Смотреть решение →
Объем правильной четырехугольной пирамиды равен V. Угол наклона ее бокового ребра к плоскости основания равен α. Нaйти боковое ребро пирамиды. Смотреть решение →
Четыре стороны равнобочной трапеции касаются цилиндра, ось которого перпендикулярна к параллельным сторонам трапеции. Найти угол, образуемый плоскостью трапеции с осью цилиндра, зная, что длины оснований трапеции равны а и b, а высота трапеции равна h. Смотреть решение →
В основании пирамиды ABCDE лежит параллелограмм ABCD. Ни одна из боковых граней не является тупоугольным треугольником. На ребре DC существует такая точка М, что прямая ЕМ перпендикулярна ВС. Кроме того, диагональ основания АС и боковые ребра ED и ЕВ связаны соотношениями: \(|AC|\geq\frac{5}{4}|ЕВ|\geq\frac{5}{3}|ED|\).
Через вершину В и середину одного из боковых ребер проведено сечение, представляющее собой равнобочную трапецию. Найти отношение площади сечения и площади основания пирамиды. Смотреть решение →
Доказать, что прямая, пересекающая две грани двугранного угла, образует с ними равные углы тогда и только тогда, когда точки пересечения одинаково удалены от ребра. Смотреть решение →
Основанием пирамиды служит равнобедренный треугольник с боковыми сторонами, равными а, и углом между ними, равным α. Все боковые ребра наклонены к основанию под углом β. Определить объем пирамиды. Смотреть решение →