Теория
Площадь проекции многоугольника Напомним, что углом между прямой и плоскостью называется угол между данной прямой и ее проекцией на плоскость (рис. 164). Теорема. Площадь ортогональной проекции многоугольника на плоскость равна площади проектируемого многоугольника, умноженной на косинус угла, образованного плоскостью многоугольника и плоскостью... Читать далее →


Задачи
  • Сторона основания АВС правильной треугольной призмы АВСА1В1С1 равна a. Точки М и N являются соответственно серединами ребер А1В1 и АА1. Проекция отрезка ВМ на прямую C1N равна \(\frac{a}{2\sqrt5}\). Определить высоту призмы. Смотреть решение →
  • В правильной четырехугольной призме через середины двух смежных сторон основания проведена плоскость, пересекающая три боковых ребра и наклоненная к плоскости основания под углом α. Определить площадь полученного сечения и острый угол его, если сторона основания призмы равна bСмотреть решение →
  • Около правильной шестиугольной пирамиды описан конус. Найти его объем, если ребро пирамиды равно l и плоский угол между двумя соседними боковыми ребрами равен αСмотреть решение →
  • На сторонах треугольника ABC взяты точки Р, Q, R так, что три прямые АР, BQ и CR пересекаются в одной точке. Доказать, что

    AR•BP•CQ = RB•PC•QA. Смотреть решение →

  • Вычислите объём правильной треугольной пирамиды, если радиус вписанной в основание окружности равен √3, а боковые ребра пирамиды равны 6. Смотреть решение →
  • В основании треугольной пирамиды SABC лежит равнобедренный прямоугольный треугольник \(\Delta АВС\) (∠А = 90°). Углы ∠SAB, ∠SCA, ∠SAC, ∠SBA (в указанном порядке) составляют арифметическую прогрессию, разность которой отлична от нуля. Площади граней SAB, АВС и SAC составляют геометрическую прогрессию. Найти углы, составляющие прогрессию. Смотреть решение →
  • Тетраэдр, ребро которого равно а, пересечен плоскостью, содержащей одно из ребер тетраэдра, и делящей противоположное ребро в отношении 2 : 1. Определить площадь сечения и углы этого сечения. (Под тетраэдром здесь понимается правильный четырехгранник (иногда тетраэдром называется произвольная треугольная пирамида)Смотреть решение →
  • Доказать, что для любого прямоугольного треугольника справедливо неравенство

    0,4 < r/ h < 0,5,

    где r - радиус вписанного круга, h - высота, опущенная на гипотенузу. Смотреть решение →

  • В конус вписана треугольная пирамида SABC (S совпадает с вершиной конуса, А, В и С лежат на окружности основания конуса), двугранные углы при ребрах SA, SB и SC равны соответственно α, β и γ. Найти угол между плоскостью SBC и плоскостью, касающейся поверхности конуса по образующей SC. Смотреть решение →
  • Доказать формулу \( sin x+sin2x+...+sin nx=\frac{sin\frac{nx}{2}sin\frac{(n+1)x}{2}}{sin\frac{x}{2}} \) Указание. Можно воспользоваться формулой Муавра

    (cos x + i sin x)n = cos nx + i sin nx Смотреть решение →