Теория
Равные и неравные отрезки
Отрезки называются равными, если они могут быть наложены один на другой так, что концы их совпадут.
Пусть нам даны два отрезка АВ и СD (рис.). Наложим отрезок АВ на отрезок CD так, чтобы точка А совпала с точкой...
Читать далее →
Задачи
Боковое ребро правильной треугольной пирамиды l, а высота пирамиды h. Определить двугранный угол при основании. Смотреть решение →
Зная хорды двух дуг круга радиуса R, найти хорду дуги, равной сумме этих дуг или их разности. Смотреть решение →
В правильной усеченной четырехугольной пирамиде даны: диагональ d, двугранный угол αпри нижнем основании и высота H. Найти объем усеченной пирамиды. Смотреть решение →
В правильной четырехугольной пирамиде центр описанного шара лежит на поверхности вписанного шара. Найти величину плоского угла при вершине пирамиды. Смотреть решение →
Стороны треугольника: а = 13, b = 14, с = 15. Две из них (а и b) служат касательными к кругу, центр которого лежит на третьей стороне. Определить радиус круга. Смотреть решение →
В кубе ABCDA1B1C1D1 найдите тангенс угла между прямой AС1 и плоскостью BСC1. Смотреть решение →
Объем правильной треугольной призмы равен V, угол между диагоналями двух граней, проведенными из одной и той же вершины, равен α. Найти сторону основания призмы. Смотреть решение →
Доказать, что для любого прямоугольного треугольника справедливо неравенство
0,4 < r/ h < 0,5,
где r - радиус вписанного круга, h - высота, опущенная на гипотенузу. Смотреть решение →
Отрезок АВ единичной длины, являющийся хордой сферы радиуса 1, расположен под углом π/3 к диаметру CD этой сферы. Расстояние от конца С диаметра до ближайшего к нему конца А хорды АВ равно √2. Определить величину отрезка BD. Смотреть решение →
Доказать, что перпендикуляры к хорде, восставленные в ее концах, пересекают произвольный диаметр в точках, которые равно удалены от центра Смотреть решение →