Теория
Теорема. Для любого угла φ sin (90° - φ) = cosφ (1) Доказательство. Если угол φ оканчивается в 1-й четверти, то угол 90° + φ должен оканчиваться во 2-й четверти. Используя единичный круг, получаем:sin (90° + φ) = BD, cos φ =... Читать далее →


Задачи
  • Вычислите объём правильной треугольной пирамиды, если радиус описанной вокруг основания окружности равен √3, а высота пирамиды равна 4√3. Смотреть решение →
  • Дана треугольная пирамида ABCD.
    Найти сумму \(\overrightarrow{AB}\) + \(\overrightarrow{CD}\) + \(\overrightarrow{AC}\) + \(\overrightarrow{BC}\) + \(\overrightarrow{DA}\). Смотреть решение →

  • Если каждую из двух противолежащих сторон четырехугольника разделить на отрезки, пропорциональные прилежащим сторонам, то прямая соединяющая точки деления пересекает продолжения двух других сторон под равными углами Смотреть решение →
  • Найти поверхность правильной n-угольной пирамиды объема V, если радиус круга, вписанного в основание, равен радиусу круга, описанного вокруг сечения, параллельного основанию и отстоящего от основания на расстоянии h.  Смотреть решение →
  • На плоскости лежат три равных шара радиуса R, попарно касающихся друг друга. Четвертый шар касается плоскости и каждого из первых трех шаров. Найти радиус четвертого шара.  Смотреть решение →
  • В параллелограмме проведены биссектрисы внутренних углов до взаимного пересечения. Доказать, что четырехугольник, образованный этими биссектрисами, - прямоугольник. Смотреть решение →
  • Через гипотенузу прямоугольного равнобедренного треугольника проведена плоскость P под углом α к плоскости треугольника. Определить периметр и площадь фигуры, которая получится, если спроектировать треугольник на плоскость P. Гипотенуза треугольника равна сСмотреть решение →
  • В прямоугольный треугольник вписан полукруг так, что диаметр его лежит на гипотенузе и центр его делит гипотенузу на отрезки, равные 15 см и 20 см. Определить длину дуги полукруга, заключенной между точками касания его с катетами.  Смотреть решение →
  • В прямоугольном параллелепипеде проведена плоскость через диагональ основания и диагональ большей боковой грани, выходящих из одной вершины. Угол между этими диагоналями равен β. Определить боковую поверхность параллелепипеда, площадь сечения и угол наклона сечения к плоскости основания, если известно, что радиус окружности, описанной около основания параллелепипеда, равен R и меньший угол между диагоналями основания равен 2αСмотреть решение →
  • Даны две параллельные прямые и точка А между ними. Найти стороны прямоугольного треугольника, вершина прямого угла которого лежит в точке А, а вершины острых углов — на заданных параллельных прямых, зная, что площадь треугольника равна заданной величине k2.  Смотреть решение →