Теория
Пусть в пространстве заданы прямые l и m. Через некоторую точку А пространства проведем прямые l1 || l и m1 || m (рис. 138).
Заметим, что точка А может быть выбрана произвольно, в частности она может лежать на одной...
Читать далее →
Задачи
Доказать, что медиана треугольника меньше полусуммы сторон, ее заключающих, и больше разности между этой полусуммой и половиной третьей стороны. Смотреть решение →
Доказать, что прямая, пересекающая две грани двугранного угла, образует с ними равные углы тогда и только тогда, когда точки пересечения одинаково удалены от ребра. Смотреть решение →
Доказать, что любой выпуклый четырехгранный угол можно пересечь плоскостью так, чтобы в сечении получился параллелограмм. Смотреть решение →
В конус вписан шар радиуса r. Найти объем конуса, если известно, что плоскость, касающаяся шара и перпендикулярная к одной из образующих конуса, отстоит от вершины конуса на расстоянии d. Смотреть решение →
Доказать, что разность между суммой квадратов расстояний произвольной точки М плоскости до двух противоположных вершин параллелограмма ABCD и суммой квадратов расстояний от той же точки до двух других вершин есть величина постоянная. Смотреть решение →
Найти угол и расстояние между двумя скрещивающимися медианами двух боковых граней правильного тетраэдра с ребром a. Смотреть решение →
В правильной шестиугольной пирамиде с плоским углом при вершине, равным α, проведено сечение через наибольшую диагональ основания под углом β к нему. Найти отношение площади сечения к площади основания. Смотреть решение →
Треугольник ABC вписан в окружность; через вершину А проведена касательная до пересечения с продолженной стороной ВС в точке D. Из вершин В и С опущены перпендикуляры на касательную, меньший из которых равен 6 см. Определить площадь трапеции, образованной этими перпендикулярами, стороной ВС и отрезком касательной, если ВС = 5 см, AD = 5√6см. Смотреть решение →
Одна из двух треугольных пирамид с общим основанием расположена внутри другой. Доказать, что сумма плоских углов при вершине внутренней пирамиды больше, чем сумма плоских углов при вершине внешней. Смотреть решение →
В правильную треугольную призму вписан шар, касающийся трех граней и обоих оснований призмы. Найти отношение поверхности шара к полной поверхности призмы. Смотреть решение →