Теория
Угол ABC — вписанный угол. Он опирается на дугу АС, заключённую между его сторонами (рис. 330). Теорема. Вписанный угол измеряется половиной дуги, на которую он опирается. Это надо понимать так: вписанный угол содержит столько угловых градусов, минут и секунд, сколько дуговых градусов,... Читать далее →


Задачи
  • В шар вписаны два одинаковых конуса, оси которых совпадают, а вершины находятся в противоположных концах диаметра шара. Найти отношение объема общей части этих двух конусов к объему шара, зная, что отношение высоты конуса h к радиусу шара R равно kСмотреть решение →
  • Вычислите объём правильной треугольной пирамиды, если радиус вписанной в основание окружности равен 2, а высота правильной пирамиды равна 3√3. Смотреть решение →
  • Вычислить площадь трапеции, параллельные стороны которой содержат 16 см и 44 см, а непараллельные 17 см и 25 см.  Смотреть решение →
  • Ромб с большей диагональю d и острым углом γвращается вокруг оси, проходящей вне его через вершину ромба и перпендикулярной к большей диагонали его. Определить объем тела вращения. Смотреть решение →
  • Грани правильной усеченной треугольной пирамиды касаются шара. Определить отношение поверхности шара к полной поверхности пирамиды, если боковые грани пирамиды наклонены к плоскости ее основания под углом αСмотреть решение →
  • Найти отношение объема шара к объему описанного около него прямого конуса, если полная поверхность конуса в n раз больше поверхности шара.  Смотреть решение →
  • Около шара описан усеченный конус. Полная поверхность этого конуса S. Второй шар касается боковой поверхности конуса по окружности основания конуса. Найти объем усеченного конуса, если известно, что часть поверхности второго шара, находящаяся внутри первого имеет площадь Q. Смотреть решение →
  • В правильной треугольной пирамиде со стороной основания, равной а, углы между ребрами при ее вершине равны между собой и каждый равен α(α <90°). Определить углы между боковыми гранями пирамиды и площадь сечения, проведенного через сторону основания перпендикулярно к противолежащему боковому ребру. Смотреть решение →
  • Боковая поверхность конуса равна S, а полная поверхность — Р. Определить угол между высотой и образующей. Смотреть решение →
  • Основанием треугольной пирамиды ABCD является треугольник АВС, в котором ∠А = π/2, ∠С = π/6, |ВС| = 2√2. Длины ребер AD, BD и CD равны между собой. Сфера радиуса 1 касается ребер AD, BD, продолжения ребра CD за точку D и плоскости АВС. Найти величину отрезка касательной, проведенной из точки А к сфере. Смотреть решение →