Теория
Теорема. Разность двух сторон треугольника относится к их сумме, как тангенс полуразности противолежащих углов к тангенсу полусуммы этих углов:
$$ \frac{a-b}{a+b} = \frac{tg\frac{A-B}{2}}{tg\frac{A+B}{2}} $$
(и две аналогичные формулы для прочих пар сторон а, с и b, с).
Доказательство. В силу теоремы синусов имеем:
$$...
Читать далее →
Задачи
Сторона правильного треугольника равна а. Из центра его радиусом а/3 описана окружность. Определить площадь части треугольника, лежащей вне этой окружности. Смотреть решение →
Показать, что отрезки, соединяющие вершины некоторой треугольной пирамиды с центрами тяжести противолежащих граней, пересекаются в одной точке и делятся этой точкой в отношении 1:3. Смотреть решение →
В правильную n-угольную призму вписан шар, касающийся всех граней призмы. Вокруг призмы также описан шар. Найти отношение объемов двух шаров. Смотреть решение →
Определить угол прямоугольного треугольника, зная, что радиус описанного около него круга относится к радиусу вписанного круга, как 5:2. Смотреть решение →
В конус вписана полусфера, большой круг которой лежит на основании конуса. Определить угол при вершине конуса, зная, что поверхность конуса относится к поверхности полусферы как 18:5. Смотреть решение →
В основании пирамиды лежит прямоугольный треугольник, являющийся проекцией боковой грани, проходящей через катет. Угол, лежащий против этого катета в основании пирамиды, равен α, а лежащий в боковой грани равен β. Площадь этой боковой грани больше площади, основания на S. Определить разность между площадями двух других граней и углы, образованные боковыми гранями с плоскостью основания. Смотреть решение →
Найти геометрическое место центров сечений шара плоскостями, проходящими через данную прямую l. Разобрать случаи, когда прямая пересекает шар, касается его или не имеет с ним общих точек. Смотреть решение →
Внутрь правильного n-угольника со стороной а вписано п равных кругов так, что каждый круг касается двух смежных сторон многоугольника и двух других кругов, Найти площадь «звездочки», образующейся в центре многоугольника. Смотреть решение →
Найти высоту тетраэдра, объем которого равен V. Под тетраэдром здесь понимается правильный четырехгранник (иногда тетраэдром называется произвольная треугольная пирамида). Смотреть решение →
Точка D - середина ребра А1С1 правильной треугольной призмы АВСА1В1С1 Правильная треугольная пирамида SMNP расположена так, что плоскость ее основания MNP совпадает с плоскостью АВС, вершина М лежит на продолжении АС, причем |СМ| = 1/2|АС|, ребро SN проходит через точку D, а ребро SP пересекает отрезок ВВ1. В каком отношении отрезок ВВ1 делится точкой пересечения? Смотреть решение →