Теория
Уравнение называется тригонометрическим, если содержит неизвестное под знаком тригонометрической функции; таковы, например, уравнения:
2sin2x + 3cos x = 0; sin 5x = sin 4x; tg (α+ x) = m tg x
(в первом уравнении неизвестное служит аргументом, во втором - входит в...
Читать далее →
Задачи
На сторонах треугольника ABC построены равносторонние треугольники ABC1, BCA1, CAB1, не перекрывающиеся с \(\Delta\)ABC. Доказать, что прямые AA1, BB1 и CC1 пересекаются в одной точке. Смотреть решение →
Сторона основания правильной четырехугольной пирамиды равна а, высота пирамиды h. Через сторону основания пирамиды и середину скрещивающегося с ней бокового ребра проведено сечение. Определить расстояние от вершины пирамиды до плоскости этого сечения. Смотреть решение →
Внутри прямого кругового конуса расположен куб так, что одно ребро куба лежит на диаметре основания конуса, вершины куба, не принадлежащие этому ребру, лежат на боковой поверхности конуса, центр куба лежит на высоте конуса. Найти отношение объема конуса к объему куба. Смотреть решение →
В основании наклонной призмы лежит прямоугольный треугольник ABC, сумма катетов которого равна m и угол при вершине А равен α. Боковая грань призмы, проходящая через катет АС, наклонена к основанию под углом β. Через гипотенузу AВ и через вершину С1 противоположного трехгранного угла проведена плоскость. Определить объём отсеченной треугольной пирамиды, если известно, что боковые ребра ее равны между собой. Смотреть решение →
В основании пирамиды лежит равнобедренный треугольник с углом αпри основании. Каждый двугранный угол при основании равен φ = 90°— α. Боковая поверхность пирамиды равна S. Определить объем пирамиды и полную поверхность ее. Смотреть решение →
Диагонали разбивают трапецию на четыре треугольника. Найти площадь трапеции, если площади треугольников, примыкающих к основаниям, равны S1 и S2. Смотреть решение →
В правильной n-угольной пирамиде плоский угол при вершине равен α, а сторона основания а. Определить объем. Смотреть решение →
Доказать, что если диаметр полукруга разделить на две произвольные части и на каждой из них описать полукруг внутри данного полукруга, то площадь, заключенная между тремя полуокружностями, будет равна площади круга, диаметр которого равен длине перпендикуляра, восставленного внутри исходного полукруга из точки деления его диаметра.
Смотреть решение →
Разделить отрезок в данном отношении. Пусть требуется разделить отрезок АВ (рис.) на две части так, чтобы они относились, как 4 и 5. Смотреть решение →
В конус вписана полусфера, большой круг которой лежит на основании конуса. Определить угол при вершине конуса, если полная поверхность конуса относится к боковой поверхности полусферы как 18 : 5. Смотреть решение →