Теория
Разделим окружность на возможно большее число равных частей, все полученные точки деления соединим с центром окружности, а соседние - друг с другом хордами. Таким образом получим ряд равных равнобедренных треугольников (черт. 339). Площадь каждого треугольника равна ah/2, где а - основание его,... Читать далее →


Задачи
  • Доказать, что если через точки пересечения двух окружностей провести две параллельные прямые, то наибольшие отрезки этих прямых, ограниченные окружностями, равны Смотреть решение →
  • Площадь равнобедренной трапеции, описанной около круга, равна S. Определить боковую сторону этой трапеции, если известно, что острый угол при основании трапеции равен π/6Смотреть решение →
  • Решить уравнение cos 4x cos 2x = cos 5x cos x Смотреть решение →
  • В конус вписан цилиндр, высота которого равна радиусу основания конуса. Найти угол между осью конуса и его образующей, зная, что полная поверхность цилиндра относится к площади основания конуса как 3:2.  Смотреть решение →
  • Найти значения тригонометрических функций угла φ, если известно, что он оканчивается в 4-й четверти и tg φ = - 3/4 Смотреть решение →
  • Определить угол наклона боковой грани правильной пятиугольной пирамиды к плоскости основания, если площадь основания пирамиды равна S, а боковой поверхности равна σСмотреть решение →
  • В выпуклом четырехугольнике ABCD точки E, F, H, G являются серединами сторон AB, BC, CD, DA соответственно и O - точка пересечения отрезков EH и FG. Известно, что EH = a, FG = b, \(\angle FOH=\frac{\pi}{3}\) Найти длины диагоналей четырехугольника. Смотреть решение →
  • В правильную треугольную призму вписан шар, касающийся трех граней и обоих оснований призмы. Найти отношение поверхности шара к полной поверхности призмы. Смотреть решение →
  • Треугольник ABC разбит на три равновеликие фигуры прямыми, параллельными стороне АС. Вычислить, на какие части разбили эти прямые сторону АВ, равную аСмотреть решение →
  • Около шара описан усеченный конус. Полная поверхность этого конуса S. Второй шар касается боковой поверхности конуса по окружности основания конуса. Найти объем усеченного конуса, если известно, что часть поверхности второго шара, находящаяся внутри первого имеет площадь Q. Смотреть решение →