Теория
Определение. Две плоскости называются взаимно перпендикулярными, если, пересекаясь, они образуют прямые двугранные углы.
Теoрема (выражающая признак перпендикулярности двух плоскостей). Если плоскость (Р, черт. 31) проходит через перпендикуляр (АВ) к другой плоскости (Q), то она перпендикулярна к этой плоскости.
Пусть DE...
Читать далее →
Задачи
Около шара описан усеченный конус, у которого образующие наклонены к основанию под углом α. Определить полную поверхность этого усеченного конуса, если радиус шара равен r. Смотреть решение →
Основанием пирамиды АВСЕН служит выпуклый четырехугольник АВСЕ, который диагональю BE делится на два равновеликих треугольника. Длина ребра АВ равна 1, длины ребер ВС и СЕ равны. Сумма длин ребер АН и ЕН равна \(\sqrt2\). Объем пирамиды равен 1/6. Найти радиус шара, имеющего наибольший объем среди всех шаров, помещающихся в пирамиде. Смотреть решение →
Доказать, что две плоскости, проведенные через концы двух троек ребер параллелепипеда, исходящих из концов диагонали параллелепипеда, рассекают эту диагональ на три равные части. Смотреть решение →
В шар радиуса R вписана прямая треугольная призма. Основанием призмы служит прямоугольный треугольник с острым утлом α, и наибольшая ее боковая грань есть квадрат. Найти объем призмы. Смотреть решение →
Из точки А, расположенной внутри угла с зеркальными сторонами, исходит луч света. Доказать, что число отражений, которое испытывает этот луч от сторон угла, всегда конечно. Найти это число, если данный угол равен α, а луч направлен под углом β к одной из его сторон. Выяснить условия, при которых луч снова пройдет через точку А. Смотреть решение →
Через вершину конуса под углом φ к основанию проведена плоскость, отсекающая от окружности основания дугу α; расстояние плоскости от центра основания равно а. Найти объем конуса. Смотреть решение →
Радиус шара, вписанного в четырехугольную правильную пирамиду, равен r. Двугранный угол, образованный двумя соседними боковыми гранями этой пирамиды, равен α. Определить объем пирамиды,.имеющей вершину в центре шара, а вершины основания — в четырех точках касания шара с боковыми гранями данной пирамиды. Смотреть решение →
Доказать, что любой плоский угол произвольного четырехгранного угла меньше суммы трех других плоских углов. Смотреть решение →
Центры четырех кругов радиуса rрасположены в вершинах квадрата со стороной а. Найти площадь S общей части всех четырех кругов, заключенной внутри квадрата. Смотреть решение →
Через середины двух параллельных ребер куба, не лежащих на одной грани, проведена прямая, и куб повернут вокруг нее на 90°. Определить объем общей части исходного куба и повернутого, зная, что ребро куба имеет длину а. Смотреть решение →