Теория
Определение. Плоскость и прямая, не лежащая в этой плоскости, называются параллельными, если они не пересекаются, сколько бы их ни продолжали. Теорема. Если прямая (АВ, черт. 5) параллельна какой-нибудь прямой (СD), расположенной в плоскости (Р), то она параллельна самой плоскости. Проведём через АВ... Читать далее →


Задачи
  • Сторона основания правильной треугольной пирамиды равна а, боковая грань наклонена к плоскости основания под углом φ. Найти объем и полную поверхность пирамиды. Смотреть решение →
  • В сектор круга радиуса R вписана окружность радиуса r . Хорда сектора равна 2а . Доказать, что

    1/r = 1/R + 1/a

     Смотреть решение →

  • Вычислить площадь кругового сегмента, дуга которого (в радианной мере) измеряется числом \( \alpha \), радиус круга равен R Смотреть решение →
  • Основанием пирамиды служит квадрат. Одна из боковых граней - равнобедренный треугольник и образует с основанием тупой угол \(\alpha\). Противоположная грань образует с основанием угол \(\beta\). Высота пирамиды равна Н; найти объём пирамиды. Смотреть решение →
  • Найти площадь сегмента, если периметр его равен р, а дуга содержит 120°. Смотреть решение →
  • На высоте конуса, равной Н, как на диаметре, описан шар. Определить объем части шара, лежащей вне конуса, если угол между образующей и высотой равен αСмотреть решение →
  • Внутри прямого кругового конуса расположен куб так, что одно ребро куба лежит на диаметре основания конуса, вершины куба, не принадлежащие этому ребру, лежат на боковой поверхности конуса, центр куба лежит на высоте конуса. Найти отношение объема конуса к объему куба. Смотреть решение →
  • Около круга радиуса R описан равнобедренный треугольник с углом 120°. Определить его стороны. Смотреть решение →
  • Сторона правильного треугольника равна а. Из центра его радиусом а/3 описана окружность. Определить площадь части треугольника, лежащей вне этой окружности. Смотреть решение →
  • Доказать, что в прямоугольном треугольнике биссектриса прямого угла делит пополам угол между медианой и высотой, опущенными на гипотенузу.  Смотреть решение →