Теория
Пусть на плоскости, где имеется прямоугольная декартова система координат, прямая l проходит через точку М0 параллельно направляющему вектору а (рис. 96).
Если прямая l пересекает ось Ох (в точке N), то под углом прямой l с осью Ох будем понимать...
Читать далее →
Задачи
Пусть длины а, b, с сторон треугольника удовлетворяют неравенствам а < b < с, образуя арифметическую прогрессию. Доказать, что ac = 6Rr, где R — радиус описанного, а r — радиус вписанного в треугольник круга.
Смотреть решение →
Около правильной треугольной призмы описан цилиндр. Площадь боковой поверхности цилиндра равна 16π. Найдите объём призмы, если сторона её основания равна 5. Смотреть решение →
Составить уравнение прямой, проходящей через точку А (2; -3) перпендикулярно вектору n = (-1;5). Смотреть решение →
Биссектриса острого угла равнобедренной трапеции ABCD делит боковую сторону длиной 17 в отношении 6:5, считая от большего основания. Найдите площадь ABCD, если меньшее основание равно 2. Смотреть решение →
На боковых гранях правильной четырехугольной пирамиды построены, как на основаниях, правильные тетраэдры. Найти расстояние между наружными вершинами двух смежных тетраэдров, если сторона основания пирамиды равна а. Смотреть решение →
В основании пирамиды лежит прямоугольник. Одна из боковых граней имеет вид равнобедренного треугольника и перпендикулярна к основанию; в другой грани, противоположной первой, боковые ребра, равные b, образуют между собой угол 2α и наклонены к первой грани под углом α. Определить объем пирамиды и угол между указанными двумя гранями. Смотреть решение →
В треугольной пирамиде SABC ребра SA, SC и SB попарно перпендикулярны, АВ = ВС = a, BS = b. Найти радиус вписанного в пирамиду шара.
Смотреть решение →
Доказать, что если через точки пересечения двух окружностей провести две параллельные прямые, то наибольшие отрезки этих прямых, ограниченные окружностями, равны Смотреть решение →
Доказать, что прямая, пересекающая две грани двугранного угла, образует с ними равные углы тогда и только тогда, когда точки пересечения одинаково удалены от ребра. Смотреть решение →
Через произвольную точку О, взятую внутри треугольника ABC, проведены прямые DE, FK, MN, параллельные, соответственно, AB, АС, BC, причем F и M лежат на AB, E и К - на BC, N и D - на АС, Доказать, что
\(\frac{AF}{AB} + \frac{BE}{BC} + \frac{CN}{CA} = 1\)
Смотреть решение →