Теория
Объединение всех прямых, проходящих через каждую точку данной кривой и некоторую фиксированную точку пространства, не лежащую на этой кривой, называется конической поверхностью. Данная кривая называется направляющей, данная фиксированная точка - вершиной, а прямые - образующими конической поверхности (рис. 233).
Легко...
Читать далее →
Задачи
Длины диагоналей ромба относятся как 3:4. Во сколько раз площадь ромба больше площади вписанного в него круга? Смотреть решение →
В основании прямой призмы лежит прямоугольный треугольник ABC. Радиус окружности, описанной около него, равен R, катет АС стягивает дугу, равную 2β. Через диагональ боковой грани, проходящей через другой катет ВС, проведена плоскость перпендикулярно к этой грани, образующая с плоскостью основания угол β. Определить боковую поверхность призмы и объем отсеченной четырехугольной пирамиды. Смотреть решение →
Определить угол ромба, зная его площадь Q и площадь вписанного в него круга S. Смотреть решение →
Найти геометрическое место точек, из которых можно провести к данному шару радиуса R три касательные, образующие трехгранный угол с тремя прямыми плоскими углами. Смотреть решение →
Доказать, что для любого прямоугольного треугольника справедливо неравенство
0,4 < r/ h < 0,5,
где r - радиус вписанного круга, h - высота, опущенная на гипотенузу. Смотреть решение →
Боковые грани правильной четырехугольной пирамиды наклонены к основанию под углом α. Апофема пирамиды равна m. Найти полную поверхность конуса, вписанного в пирамиду, а также угол наклона бокового ребра к основанию. Смотреть решение →
Диагонали разбивают трапецию на четыре треугольника. Найти площадь трапеции, если площади треугольников, примыкающих к основаниям, равны S1 и S2. Смотреть решение →
В правильной треугольной пирамиде SABC (S - вершина) точка Е - середина апофемы грани SBC, а точки F, L и М лежат на ребрах АВ, АС и SC соответственно, причем |AL| = 1/10|AC|. Известно, что EFLM - равнобедренная трапеция и длина ее основания EF равна √7. Найти объем пирамиды. Смотреть решение →
В параллелограмме проведены биссектрисы внутренних углов до взаимного пересечения. Доказать, что четырехугольник, образованный этими биссектрисами, - прямоугольник. Смотреть решение →
Вершины А, В и С треугольника соединены с точками А1, В1, С1, расположенными произвольно на противоположных сторонах (но не в вершинах). Доказать, что середины отрезков AA1, BB1 и CC1 не лежат на одной прямой. Смотреть решение →