Теория
Прежде всего отметим уже известные нам тождества
$$ tg \phi=\frac{sin \phi}{cos \phi} \;\;(1)$$
$$ ctg \phi=\frac{cos \phi}{sin \phi} \;\;(2)$$
Из этих двух тождеств следует, что
tg φ • ctg φ = 1 (3)
Теперь покажем, что для любого угла φ
sin2 φ +...
Читать далее →
Задачи
В основании треугольной пирамиды SABC лежит равнобедренный прямоугольный треугольник \(\Delta АВС\) (∠А = 90°). Углы ∠SAB, ∠SCA, ∠SAC, ∠SBA (в указанном порядке) составляют арифметическую прогрессию, разность которой отлична от нуля. Площади граней SAB, АВС и SAC составляют геометрическую прогрессию. Найти углы, составляющие прогрессию. Смотреть решение →
В правильной четырехугольной призме через середины двух смежных сторон основания проведена плоскость, пересекающая три боковых ребра и наклоненная к плоскости основания под углом α. Определить площадь полученного сечения и острый угол его, если сторона основания призмы равна b. Смотреть решение →
Внутри правильной треугольной пирамиды расположена вершина трехгранного угла, все плоские углы которого прямые, а биссектрисы плоских углов проходят через вершины основания. В каком отношении поверхность этого угла делит объем пирамиды, если каждая грань пирамиды разделена ею на две равновеликие части? Смотреть решение →
Правильная треугольная пирамида рассечена плоскостью, перпендикулярной к основанию и делящей две стороны основания пополам. Определить объем отсеченной пирамиды, если даны сторона а основания первоначальной пирамиды и двугранный угол αпри основании. Смотреть решение →
Правильную четырехугольную призму требуется пересечь плоскостью так, чтобы в сечении получился ромб с острым углом α. Найти угол наклона секущей плоскости к основанию. Смотреть решение →
Основанием пирамиды служит прямоугольный треугольник, а высота ее проходит через точку пересечения гипотенузы с биссектрисой прямого угла основания. Боковое ребро, проходящее через вершину прямого угла, наклонено к плоскости основания под углом α. Определить объем пирамиды и углы наклона боковых граней к плоскости основания, если биссектриса прямого угла основания равна m и образует с гипотенузой угол 45° + α. Смотреть решение →
В равнобедренном треугольнике с основанием, равным 4 см, и высотой, равной 6 см, на боковой стороне, как на диаметре, построена полуокружность. Точки пересечения ее с основанием и боковой стороной соединены прямой. Определить площадь получившегося четырехугольника, вписанного в полукруг. Смотреть решение →
В усеченный конус вписан шар радиуса r. Образующая конуса наклонена к плоскости основания под углом α. Найти объем конуса. Смотреть решение →
В конус вписан шар. Найти объем шара, если образующая конуса равна l и наклонена к плоскости основания под углом α. Смотреть решение →
Две окружности радиусов R и r находятся в положении внешнего касания. К этим окружностям проведена общая внешняя касательная, и в образовавшийся при этом криволинейный треугольник вписана окружность. Найти ее радиус. Смотреть решение →