Теория
Рассмотрим некоторую плоскость р и точку М. Ортогональной проекцией точки М на плоскость р называется основание М0 перпендикуляра к плоскости р, проведенного через точку М (рис. 157). Плоскость р называют в этом случае плоскостью проекции.
Существует единственный перпендикуляр к плоскости р,...
Читать далее →
Задачи
Два треугольника ABC и А1В1С1 расположены симметрично друг другу относительно центра их общего вписанного круга радиуса r . Доказать, что произведение площадей ABC, А1В1С1 и шести треугольников, получившихся при пересечении сторон \(\Delta\)ABC и \(\Delta\)А1В1С1, равно r 16.
Смотреть решение →
Центр сферы α лежит на поверхности сферы β. Отношение поверхности сферы β, лежащей внутри сферы α, ко всей поверхности сферы α равно 1/5. Найти отношение радиусов сфер α и β. Смотреть решение →
Выпуклый четырехугольник ABCD описан около окружности с центром в точке O, при этом AO = OC = 1, BO = OD = 2. Найти периметр четырехугольника ABCD. Смотреть решение →
Найти сумму \(\overrightarrow{KD}\) + \(\overrightarrow{MC}\) + \(\overrightarrow{DM}\) + \(\overrightarrow{CK}\) Смотреть решение →
Окружность разделена произвольным образом на четыре части, и середины получающихся дуг соединены отрезками прямых. Показать, что среди этих отрезков два будут перпендикулярны между собой.
Смотреть решение →
В круге радиуса R по одну сторону от центра проведены три параллельные между собой хорды, соответственно равные сторонам правильных вписанных в круг шестиугольника, четырехугольника и треугольника. Определить отношение площади той части круга, которая заключена между второй и третьей хордами, к площади той части круга, которая заключена между первой и второй хордами. Смотреть решение →
Из точки окружности опущены перпендикуляры на стороны вписанного в нее треугольника. Доказать, что основания перпендикуляров лежат на одной прямой (прямая Симсона) Смотреть решение →
В равнобедренном треугольнике с основанием, равным 4 см, и высотой, равной 6 см, на боковой стороне, как на диаметре, построена полуокружность. Точки пересечения ее с основанием и боковой стороной соединены прямой. Определить площадь получившегося четырехугольника, вписанного в полукруг. Смотреть решение →
Доказать, что во всяком треугольнике большей стороне соответствует меньшая биссектриса. Смотреть решение →
Доказать, что прямая, соединяющая середины параллельных сторон трапеции, пройдет через точку пересечения диагоналей. Смотреть решение →