Теория
Определение. Плоскость, имеющая с шаровой поверхностью только одну общую точку, называется касательной плоскостью. Возможность существования такой плоскости доказывается следующей теоремой.
Теорема. Плоскость (Р, черт. 140), перпендикулярная к радиусу (АО) в конце его, лежащем на поверхности шара, есть касательная плоскость.
Возьмём на плоскости...
Читать далее →
Задачи
К двум окружностям радиусов R и r, находящимся в положении внешнего касания, проведены их общие внешние касательные. Определить площадь трапеции, ограниченной этими касательными и хордами, соединяющими точки касания. Смотреть решение →
Дан усеченный конус, у которого высота есть среднее пропорциональное между диаметрами оснований. Доказать, что в конус можно вписать шар. Смотреть решение →
Рассматривается проекция куба с ребром а на плоскость, перпендикулярную к одной из диагоналей куба. Во сколько раз площадь проекции будет больше площади сечения куба плоскостью, проходящей через середину диагонали куба перпендикулярно к ней? Смотреть решение →
Основанием пирамиды является прямоугольный треугольник с катетами 6 и 8. Вершина пирамиды удалена от плоскости ее основания на расстояние, равное 24, и проектируется на эту плоскость в точку, лежащую внутри основания. Найти ребро куба, четыре вершины которого лежат в плоскости основания данной пирамиды, а ребра, соединяющие эти вершины, параллельны соответствующим катетам треугольника, лежащего в основании пирамиды. Четыре другие вершины куба лежат на боковых гранях данной пирамиды. Смотреть решение →
В прямом параллелепипеде стороны основания равны а и b и острый угол — α. Большая диагональ основания равна меньшей диагонали параллелепипеда. Найти объем параллелепипеда. Смотреть решение →
Ребро куба и ребро правильного тетраэдра лежат на одной прямой, середины противоположных им ребер куба и тетраэдра совпадают. Найти объем общей части куба и тетраэдра, если ребро куба равно a. Смотреть решение →
Дана трапеция ABCD с основаниями AD и BC. Диагонали AC и BD пересекаются в точке O, а прямые AB и CD - в точке K. Прямая KO пересекает стороны BC и AD в точках M и N соответственно, а угол BAD равен 30°. Известно, что в трапеции ABMN и NMCD можно вписать окружность. Найти отношение площадей треугольника BKC и трапеции ABCD. Смотреть решение →
Катеты прямоугольного треугольника равны b и с. Найти длину биссектрисы прямого угла. Смотреть решение →
В квадрат со стороной а вписан другой квадрат, вершины которого лежат на сторонах первого квадрата. Определить отрезки, на которые стороны первого квадрата рассекаются вершинами второго квадрата, если площадь второго квадрата равна 25/49 площади первого квадрата. Смотреть решение →
В основании пирамиды лежит прямоугольный треугольник, являющийся проекцией боковой грани, проходящей через катет. Угол, лежащий против этого катета в основании пирамиды, равен α, а лежащий в боковой грани равен β. Площадь этой боковой грани больше площади, основания на S. Определить разность между площадями двух других граней и углы, образованные боковыми гранями с плоскостью основания. Смотреть решение →