Теория
Множество всех точек пространства, находящихся на данном расстоянии R от данной точки С, называется сферой радиуса R с центром в точке С (рис. 211).
Другими словами, сфера радиуса R с центром в точке С - это множество всех точек М пространства,...
Читать далее →
Задачи
На сторонах AB и АС треугольника ABC отложено в противоположных направлениях два равных отрезка BD = СЕ. Доказать, что отрезок DE делится стороной BC в отношении, обратном отношению сторон AB и АС. Смотреть решение →
Найти площадь равнобедренной трапеции, если ее высота равна h, а боковая сторона видна из центра описанной окружности под углом а. Смотреть решение →
Найти двугранный угол между боковыми гранями правильной треугольной пирамиды, если двугранный угол, образуемый боковой гранью с основанием, равен α. Смотреть решение →
Высота треугольника равна 4; она делит основание на две части, относящиеся, как 1 : 8. Найти длину прямой, параллельной высоте и делящей треугольник на равновеликие части. Смотреть решение →
Три последовательные стороны плоского выпуклого пятиугольника равны 1, 2 и а. Найти оставшиеся две стороны этого пятиугольника, если известно, что он является ортогональной проекцией на плоскость правильного пятиугольника. При каких значениях а задача имеет решение? Смотреть решение →
По основаниям а и b и боковым сторонам с и d трапеции определить ее диагонали m и n. Смотреть решение →
Треугольник АОВ повернут в своей плоскости вокруг вершины О на 90°, причем вершина А перешла в А1, а вершина В — в В1. Доказать, что в треугольнике OAB1 медиана стороны AB1 является высотой для \(\Delta\)OA1В (аналогично медиана стороны А1В в \(\Delta\)OA1В является высотой для \(\Delta\)OAB1).
Смотреть решение →
В треугольнике ABC AC=BC=15, AB=18. Найдите синус внешнего угла при вершине A. Смотреть решение →
В правильной четырехугольной усеченной пирамиде с боковыми ребрами AA1, ВВ1, СС1, DD1 сторона верхнего основания A1B1C1D1 равна 1, а сторона нижнего основания равна 7. Плоскость, проходящая через ребро В1С1 перпендикулярно к плоскости AD1C, делит пирамиду на две части равного объема. Найти объем пирамиды. Смотреть решение →
В конус, радиус основания которого равен R и образующие наклонены к основанию под углом α/2, вписана прямая треугольная призма так, что ее нижнее основание лежит на основании конуса, а вершины верхнего — на боковой поверхности конуса. Определить боковую поверхность призмы, если в основании призмы лежит прямоугольный треугольник с острым углом α, а высота призмы равна радиусу сечения конуса плоскостью, проходящей через верхнее основание призмы. Смотреть решение →