Теория
Произведением ненулевого вектора а на число х =/= 0 называется вектор, длина которого равна | x | • | а |, а направление совпадает с направлением а, если х > 0, и противоположно ему, если х < 0.
Произведением нулевого...
Читать далее →
Задачи
На ребре двугранного угла дан отрезок АВ. В одной из граней дана точка М, в которой прямая, проведенная из точки А под углом α к АВ, пересекает прямую, проведенную из В перпендикулярно к АВ. Определить величину двугранного угла, если прямая AM наклонена ко второй грани двугранного угла под углом β. Смотреть решение →
Правильная треугольная пирамида пересечена плоскостью, проходящей через вершину основания и середины двух боковых ребер. Найти отношение боковой поверхности пирамиды к площади основания, если известно, что секущая плоскость перпендикулярна к боковой грани. Смотреть решение →
Основанием пирамиды является прямоугольный треугольник с катетами 6 и 8. Вершина пирамиды удалена от плоскости ее основания на расстояние, равное 24, и проектируется на эту плоскость в точку, лежащую внутри основания. Найти ребро куба, четыре вершины которого лежат в плоскости основания данной пирамиды, а ребра, соединяющие эти вершины, параллельны соответствующим катетам треугольника, лежащего в основании пирамиды. Четыре другие вершины куба лежат на боковых гранях данной пирамиды. Смотреть решение →
В правильную четырехугольную пирамиду вписан куб так, что вершины его лежат на апофемах пирамиды. Найти отношение объема пирамиды к объему куба, зная, что угол между высотой пирамиды и ее боковой гранью равен α. Смотреть решение →
В основании прямой призмы лежит прямоугольный треугольник ABC. Радиус окружности, описанной около него, равен R, катет АС стягивает дугу, равную 2β. Через диагональ боковой грани, проходящей через другой катет ВС, проведена плоскость перпендикулярно к этой грани, образующая с плоскостью основания угол β. Определить боковую поверхность призмы и объем отсеченной четырехугольной пирамиды. Смотреть решение →
Ребро куба равно а; АВ — его диагональ. Найти радиус сферы, касающейся трех граней, сходящихся в вершине А, и касающейся трех ребер, выходящих из вершины В. Найти также часть поверхности этой сферы, которая лежит вне куба. Смотреть решение →
В тетраэдре два противоположных ребра перпендикулярны, их длины a и b, расстояние между ними c. В тетраэдр вписан куб, четыре ребра которого перпендикулярны этим двум ребрам тетраэдра, и на каждой грани тетраэдра лежат в точности две вершины куба. Найти ребро куба. Смотреть решение →
Над плоским потолком зала, имеющего форму квадрата со стороной а, сделана крыша, построенная следующим образом: каждая пара смежных вершин квадрата, образующего потолок зала, соединена прямыми с серединой противолежащей стороны, на каждом из получившихся четырех треугольников, как на основании, построена пирамида, вершина которой проектируется в середину соответствующей стороны квадрата. Расположенные выше других части граней этих четырех пирамид образуют крышу. Найти объем чердака (т. е. пространства между потолком и крышей), если высота каждой из пирамид равна h. Смотреть решение →
Расстояние между центрами двух окружностей, радиусы которых равны 17 см и 10 см, равно 21 cм. Определить расстояние центров от точки, в которой прямая центров пересекается с общей касательной окружностей. Смотреть решение →
Определить углы, составляемые с основанием боковым ребром и боковой гранью правильной пятиугольной пирамиды, у которой боковые грани — равносторонние треугольники. Смотреть решение →