Теория
Центральная симметрияДве фигуры называются симметричными относительно какой-либо точки О пространства, если каждой точке А одной фигуры соответствует в другой фигуре точка А, расположенная на прямой ОА по другую сторону от точки О, на расстоянии, равном расстоянию точки А от точки...
Читать далее →
Задачи
В правильной четырехугольной пирамиде сторона основания равна а, а двугранный угол при основании равен α. Через две противоположные стороны основания пирамиды проведены две плоскости, пересекающиеся взаимно под прямым углом. Определить длину линии их пересечения, заключенную внутри пирамиды, если известно, что она пересекает ось пирамиды. Смотреть решение →
В основании треугольной пирамиды SABC лежит равнобедренный прямоугольный треугольник \(\Delta АВС\) (∠А = 90°). Углы ∠SAB, ∠SCA, ∠SAC, ∠SBA (в указанном порядке) составляют арифметическую прогрессию, разность которой отлична от нуля. Площади граней SAB, АВС и SAC составляют геометрическую прогрессию. Найти углы, составляющие прогрессию. Смотреть решение →
Ромб с большей диагональю d и острым углом γвращается вокруг оси, проходящей вне его через вершину ромба и перпендикулярной к большей диагонали его. Определить объем тела вращения. Смотреть решение →
В правильную четырехугольную призму вписан цилиндр. Объем цилиндра равен \(16\pi \sqrt2\), а радиус окружности, описанной вокруг основания призмы, равен 2√2. Найдите диагональ призмы. Смотреть решение →
Отрезки АВ и CD пересекаются в точке М так, что АМ = MD, СМ = МВ. Доказать, что точки А, В, С и D лежат на одной окружности Смотреть решение →
Круга радиуса r касаются внешним образом три одинаковых окружности, касающиеся, кроме того, попарно между собой. Найти площади трех криволинейных треугольников, образованных указанными окружностями. Смотреть решение →
Найти отношение площади треугольника ABC к площади другого треугольника, стороны которого равны медианам треугольника ABC. Смотреть решение →
Через вершину правильной четырехугольной пирамиды под углом φк основанию пирамиды проведена плоскость параллельно стороне основания. Сторона основания пирамиды равна а, а плоский угол при вершине пирамиды равен α. Найти площадь сечения пирамиды. Смотреть решение →
Определить площадь треугольника, если даны а и b— длины его сторон и t — длина биссектрисы угла между этими сторонами. Смотреть решение →
В конус вписан шар. Отношение их объемов равно n. Найти угол наклона образующей к основанию (вычислить при n = 4). Смотреть решение →