Теория
Рассмотрим тело вращения, полученное вращением вокруг оси абсцисс криволинейной трапеции, которая соответствует неотрицательной непрерывной функции
у = f(x), х \( \in \) [а; b] (рис. 250).
Очевидно, что сечение этого тела плоскостью, проходящей через точку с абсциссой
х \( \in...
Читать далее →
Задачи
Доказать, что сумма квадратов диагоналей трапеции равна сумме квадратов боковых сторон с удвоенным произведением оснований. Смотреть решение →
Найти уравнения проекции прямой $$ \frac{x-1}{9}=\frac{y+1}{-4}=\frac{z}{-7} $$ на плоскость Смотреть решение →
В плоскости Р дан равнобедренный треугольник АВС (|АВ| = |ВС| = l, |АС| = 2а). Шар радиуса r касается плоскости Р в точке В. Две скрещивающиеся прямые проходят через точки А и С и касаются шара. Угол между каждой из этих прямых и плоскостью Р равен α. Найти расстояние между этими прямыми. Смотреть решение →
Даны две скрещивающиеся прямые a и b. Построить прямую, пересекающую обе данные прямые и перпендикулярную к ним обеим Смотреть решение →
Пусть a, b — катеты прямоугольного треугольника, с — гипотенуза, h — высота, опущенная из вершины прямого угла на гипотенузу. Доказать, что треугольник со сторонами h, c + h, a + b является прямоугольным.
Смотреть решение →
Основание пирамиды — правильный треугольник со стороной а. Одно из боковых ребер перпендикулярно к основанию, а остальные два наклонены к плоскости основания под равными углами β. Найти площадь наибольшей боковой грани пирамиды и угол наклона ее к плоскости основания. Смотреть решение →
Периметр прямоугольного треугольника равен 132, а сумма квадратов сторон треугольника — 6050. Найти стороны. Смотреть решение →
Доказать, что если через точки пересечения двух окружностей провести две параллельные прямые, то наибольшие отрезки этих прямых, ограниченные окружностями, равны Смотреть решение →
Апофема правильной шестиугольной пирамиды равна m. Двугранный угол при основании равен α. Найти полную поверхность пирамиды. Смотреть решение →
Среди следующих пар прямых и плоскостей указать параллельные или перпендикулярные; в случае пересечения прямой и плоскости найти точку пересечения:
$$ а) \frac{x-1}{3}=\frac{y+2}{3}=\frac{z}{-5} \;\;и\;\; 7x-2y+3z-1=0 \\ б) \frac{x}{2}=\frac{y-1}{3}=\frac{z-1}{4} \;\;и\;\;x-y+z-3=0 \\ в) \begin{cases}6x+3y-2z-21=0\\6x+y+2z-31=0\end{cases} \;\;и\;\; 2x-6y-3z-91=0 $$ Смотреть решение →