Теория
Любой отрезок прямой имеет две концевые точки. Если одна из них принята за начало отрезка, а другая - за конец, то такой отрезок называется направленным. Направленные отрезки обычно обозначаются двумя буквами со стрелкой, например, \(\overrightarrow{AB}\), \(\overrightarrow{BA}\), \(\overrightarrow{OA}\), \(\overrightarrow{OB}\) и т.... Читать далее →


Задачи
  • Около правильной четырехугольной призмы описан цилиндр, площадь боковой поверхности которого равна 20π. Найдите площадь боковой поверхности призмы. Смотреть решение →
  • Около правильной шестиугольной призмы описан цилиндр. Объём цилиндра равен 10π. Найдите объём цилиндра, вписанного в эту же призму. Смотреть решение →
  • Шаровой сегмент шара радиуса R имеет полную поверхность S. Найти его высоту. Смотреть решение →
  • Основанием пирамиды служит прямоугольный треугольник, а высота ее проходит через точку пересечения гипотенузы с биссектрисой прямого угла основания. Боковое ребро, проходящее через вершину прямого угла, наклонено к плоскости основания под углом α. Определить объем пирамиды и углы наклона боковых граней к плоскости основания, если биссектриса прямого угла основания равна m и образует с гипотенузой угол 45° + αСмотреть решение →
  • Основанием пирамиды служит прямоугольник. Из боковых граней две перпендикулярны к плоскости основания, а две другие образуют с ней углы α и β. Высота пирамиды равна H. Определить объем пирамиды. Смотреть решение →
  • В основании прямой призмы лежит трапеция, вписанная в полукруг радиуса R так, что большее основание ее совпадает с диаметром, а меньшее стягивает дугу, равную 2α. Определить объем призмы, если диагональ грани, проходящей через боковую сторону основания, наклонена к основанию под углом αСмотреть решение →
  • Внутри квадрата СО стороной а расположены четыре равных круга; каждый из них касается двух смежных сторон квадрата и двух кругов (из числа остальных трех). Найти площадь криволинейного четырехугольника, образованного дугами касающихся кругов (вершинами служат точки касания кругов). Смотреть решение →
  • В треугольнике из основания каждой высоты опущены перпендикуляры на две другие стороны. Доказать, что: 1) основания этих перпендикуляров являются вершинами шестиугольника, три из сторон которого параллельны сторонам треугольника; 2) вокруг этого шестиугольника можно описать окружность.  Смотреть решение →
  • Разделить отрезок в данном отношении. Пусть требуется разделить отрезок АВ (рис.) на две части так, чтобы они относились, как 4 и 5. Смотреть решение →
  • Длины диагоналей ромба относятся как 3:4. Во сколько раз площадь ромба больше площади вписанного в него круга? Смотреть решение →