Теория
Рассмотрим два прямоугольных треугольника с острыми углами в 60° и 30° (рис. 364).
Стороны второго треугольника по сравнению с первым уменьшены в два раза:
\(\frac{AB}{A’B’}\) = 2; \(\frac{AC}{A’C’}\) = 2; \(\frac{BC}{B’C’}\) = 2.
У этих треугольников углы попарно равны. Стороны, лежащие против равных...
Читать далее →
Задачи
Определить площадь треугольника, если даны а и b— длины его сторон и t — длина биссектрисы угла между этими сторонами. Смотреть решение →
Расстояние между центрами двух окружностей, радиусы которых равны 17 см и 10 см, равно 21 cм. Определить расстояние центров от точки, в которой прямая центров пересекается с общей касательной окружностей. Смотреть решение →
Через гипотенузу прямоугольного равнобедренного треугольника проведена плоскость P под углом α к плоскости треугольника. Определить периметр и площадь фигуры, которая получится, если спроектировать треугольник на плоскость P. Гипотенуза треугольника равна с. Смотреть решение →
Найти геометрическое место точек, для которых разность расстояний до двух данных прямых m и l равна отрезку данной длины. Разобрать случаи параллельных и пересекающихся прямых. Смотреть решение →
Решить уравнение sin2 2х + sin2 x = 1 Смотреть решение →
Основанием пирамиды служит многоугольник, описанный около круга радиуса r ; периметр многоугольника равен 2р, боковые грани пирамиды наклонены к плоскости основания под углом φ. Найти объем пирамиды. Смотреть решение →
Боковая поверхность конуса равна S, а полная поверхность — Р. Определить угол между высотой и образующей. Смотреть решение →
Найти объем треугольной пирамиды, если площади ее граней равны S0, S1, S2, S3, а двугранные углы, прилежащие к грани с площадью S0, равны между собой. Смотреть решение →
В конус вписан шар, причем отношение их объемов равно k. Найти отношение объемов шаровых сегментов, отсекаемых от шара плоскостью, проходящей через линию касания шара с конусом. Смотреть решение →
В прямоугольном треугольнике ABC катет АС в 3 раза больше катета AB. Точками К и F катет АС разделен на три равные части. Доказать, что
∠АKB + ∠AFB + ∠ACB = π/2. Смотреть решение →