Теория
1. Смежные углы. Если мы продолжим сторону какого-нибудь угла за его вершину, то получим два угла (рис. 72): ∠АВС и ∠СВD, у которых одна сторона ВС общая, а две другие, АВ и ВD, составляют прямую линию. Два угла, у которых одна сторона... Читать далее →


Задачи
  • Четыре стороны равнобочной трапеции касаются цилиндра, ось которого перпендикулярна к параллельным сторонам трапеции. Найти угол, образуемый плоскостью трапеции с осью цилиндра, зная, что длины оснований трапеции равны а и b, а высота трапеции равна hСмотреть решение →
  • Все три плоских угла некоторого трехгранного угла являются острыми. Один из них равен α; двугранные углы, прилежащие к этому плоскому углу, равны, соответственно, β и γ. Найти два других плоских угла.  Смотреть решение →
  • Расстояние между центрами двух окружностей, радиусы которых равны 17 см и 10 см, равно 21 cм. Определить расстояние центров от точки, в которой прямая центров пересекается с общей касательной окружностей.  Смотреть решение →
  • В конус вписан цилиндр, высота которого равна радиусу основания конуса. Найти угол между осью конуса и его образующей, если полная поверхность цилиндра относится к площади основания конуса как 3 : 2. Смотреть решение →
  • Вычислите объём правильной шестиугольной пирамиды, если сторона основания равна 4, а боковые ребра пирамиды равны 5 Смотреть решение →
  • В прямоугольном параллелепипеде ABCDA1B1C1D1 длины ребер АВ, ВС и ВВ1 равны соответственно 2a, a и a, точка Е - середина ребра ВС. Вершины М и N правильного тетраэдра MNPQ лежат на прямой С1Е, вершины Р и Q - на прямой, проходящей через точку B1 и пересекающей прямую AD в точке F. Найти: а) длину отрезка DF; б) расстояние между серединами отрезков MN и PQ. Смотреть решение →
  • Диагонали разбивают трапецию на четыре треугольника. Найти площадь трапеции, если площади треугольников, примыкающих к основаниям, равны S1 и S2Смотреть решение →
  • В точке А, находящейся на расстоянии а от центра круглого биллиарда радиуса R, лежит упругий шарик, размерами которого можно пренебречь. В какую точку В борта нужно его направить, чтобы, дважды отразившись от борта, он снова вернулся в точку А?  Смотреть решение →
  • В правильную n-угольную призму вписан шар, касающийся всех граней призмы. Вокруг призмы также описан шар. Найти отношение объемов двух шаров. Смотреть решение →
  • Через каждое ребро тетраэдра проведена плоскость, параллельная противоположному ребру. Найти отношение объема полученного параллелепипеда к объему тетраэдра. Смотреть решение →