Теория
Уравнения, с которыми приходится сталкиваться при решении практических задач, как правило, значительно отличаются от тех, которые мы рассматривали. Для таких уравнений иногда вообще нельзя указать никакого способа, который позволял бы найти корни абсолютно точно. В таком случае приходится ограничиваться нахождением...
Читать далее →
Задачи
Секущая плоскость делит боковые ребра треугольной пирамиды в отношениях (считая от вершины) \( \frac{m_1}{n_1}, \frac{m_2}{n_2}, \frac{m_3}{n_3} \). В каком отношении эта плоскость разделит объем пирамиды? Смотреть решение →
Определить объем конуса, если в его основании хорда, равная а, стягивает дугу α, а высота конуса составляет с образующей угол β. Смотреть решение →
В равнобедренной трапеции диагональ перпендикулярна к боковой стороне. Боковая сторона равна b и составляет с большим основанием угол α. Определить поверхность тела, образованного вращением трапеции вокруг большего основания. Смотреть решение →
Определить углы, составляемые с основанием боковым ребром и боковой гранью правильной пятиугольной пирамиды, у которой боковые грани — равносторонние треугольники. Смотреть решение →
В правильной треугольной пирамиде SABC (S - вершина) точка Е - середина апофемы грани SBC, а точки F, L и М лежат на ребрах АВ, АС и SC соответственно, причем |AL| = 1/10|AC|. Известно, что EFLM - равнобедренная трапеция и длина ее основания EF равна √7. Найти объем пирамиды. Смотреть решение →
Один из двугранных углов трехгранного угла равен А; прилежащие к данному двугранному углу плоские углы соответственно равны α и β. Найти третий плоский угол. Смотреть решение →
Прямая линия — касательная к боковой поверхности конуса — составляет с образующей, проходящей через точку касания, угол θ. Какой угол φ составляет эта прямая с плоскостью основания Р конуса, если образующие его наклонены к плоскости Р под углом α? Смотреть решение →
В правильной призме ABCA1B1C1 длина бокового ребра и высота основания равна a. Через вершину А проведены две плоскости: одна перпендикулярно прямой АВ1, вторая перпендикулярно прямой АС1. Через вершину A1 также проведены две плоскости: одна перпендикулярно прямой А1В, вторая перпендикулярно прямой A1C. Найти объем многогранника, ограниченного этими четырьмя плоскостями и плоскостью BB1C1C. Смотреть решение →
На стороне AB параллелограмма ABCD, как на диаметре, построена окружность, проходящая через точку пересечения диагоналей и середину стороны AD. Найдите углы параллелограмма. Смотреть решение →
Даны окружность К и ее хорда АВ. Рассматриваются все треугольники, вписанные в окружность и имеющие основанием данную хорду. В каждом треугольнике взята точка пересечения высот. Найти геометрическое место этих точек. Смотреть решение →