Теория

1. Треугольник обозначается тремя заглавными буквами, стоящими при его вершинах. Для сокращения записи слов «треугольник» заменяют знаком \(\Delta\). Треугольник, изображённый на чертеже 111, можно записать так: \(\Delta\)АВС.
Сторону треугольника принято обозначать той же буквой, что и вершину угла, противолежащего этой стороне,...
Читать далее →
Задачи
Определить площадь треугольника, если две стороны соответственно равны 27 см и 29 см, а медиана третьей стороны равна 26 см. Смотреть решение →
Решить уравнение 1 + cos x + sin x = 0 Смотреть решение →
Около шара радиуса r описана правильная n-угольная пирамида, у которой двугранный угол при основании равен α. Найти отношение объема шара к объему пирамиды. Смотреть решение →
Определить угол между осью и образующей такого конуса, у которого полная поверхность в n раз больше площади осевого сечения. Смотреть решение →
Внутри равностороннего треугольника со стороной а расположены три равных круга, касающиеся сторон треугольника и взаимно касающиеся друг друга. Найти площадь криволинейного треугольника, образованного дугами взаимно касающихся кругов (вершинами служат точки взаимного касания). Смотреть решение →
Все ребра треугольной пирамиды ABCD касаются некоторого шара. Три отрезка, соединяющие середины скрещивающихся ребер, равны. Угол АВС равен 100°. Найти отношение высот пирамиды, опущенных из вершин А и В. Смотреть решение →
На плоскости лежат четыре равных шара радиуса R, причем три из них касаются попарно друг друга, а четвертый касается двух из этих трех. На эти шары сверху положены два равных шара меньшего радиуса, касающихся друг друга, причем каждый из них касается трех больших шаров. Найти отношение радиусов большого и малого шаров. Смотреть решение →
В параллелограмме проведены биссектрисы внутренних углов до взаимного пересечения. Доказать, что четырехугольник, образованный этими биссектрисами, - прямоугольник. Смотреть решение →
Показать, что если плоскость, проведенная через концы трех ребер параллелепипеда, исходящих из одной вершины, отсекает от параллелепипеда правильный тетраэдр, то параллелепипед можно пересечь плоскостью так, чтобы в сечении получился правильный шестиугольник. Смотреть решение →
Взяты две противоположные вершины куба и через середины шести ребер, не проходящих через эти вершины, проведена секущая плоскость, которая делит куб на две части. В каждую из этих частей помещен шар, касающийся трех граней куба и секущей плоскости. Во сколько раз объем каждого из этих шаров будет меньше объема куба? Смотреть решение →