Теория
1. Треугольник обозначается тремя заглавными буквами, стоящими при его вершинах. Для сокращения записи слов «треугольник» заменяют знаком \(\Delta\). Треугольник, изображённый на чертеже 111, можно записать так: \(\Delta\)АВС. Сторону треугольника принято обозначать той же буквой, что и вершину угла, противолежащего этой стороне,... Читать далее →


Задачи
  • Дан усеченный конус, боковая поверхность которого равна площади круга, имеющего своим радиусом образующую усеченного конуса. Доказать, что в данный конус можно вписать шар. Смотреть решение →
  • В основании четырехугольной пирамиды лежит ромб, сторона которого равна а и острый угол равен α. Плоскости, проходящие через вершину пирамиды и диагонали основания, наклонены к плоскости основания под углами φи ψ. Определить объем пирамиды, если ее высота пересекает сторону основания. Смотреть решение →
  • Основанием треугольной пирамиды ABCD является треугольник АВС, в котором ∠А = π/2, ∠С = π/6, |ВС| = 2√2. Длины ребер AD, BD и CD равны между собой. Сфера радиуса 1 касается ребер AD, BD, продолжения ребра CD за точку D и плоскости АВС. Найти величину отрезка касательной, проведенной из точки А к сфере. Смотреть решение →
  • В треугольнике даны сторона а, угол В и угол С. Определить объем тела, полученного от вращения треугольника около данной стороны. Смотреть решение →
  • Стороны треугольника: а = 13, b = 14, с = 15. Две из них (а и b) служат касательными к кругу, центр которого лежит на третьей стороне. Определить радиус круга.  Смотреть решение →
  • В прямоугольном треугольнике гипотенуза с, а один из острых углов равен α. Определить радиус вписанного круга. Смотреть решение →
  • Найти наибольшее и наименьшее значения функции

    у = 2 sin2 х + 4 cos2 х + 6 sin х cos х Смотреть решение →

  • Найти площадь равнобедренного треугольника, если основание его 12 см, а высота, опущенная на основание, равна прямой, соединяющей середины основания и боковой стороны.  Смотреть решение →
  • Ромб с острым углом αи стороной а разделен прямыми, исходящими из вершины этого острого угла, на три равновеликие части. Определить длины отрезков этих прямых. Смотреть решение →
  • Найти геометрическое место центров сечений шара плоскостями, проходящими через данную прямую l. Разобрать случаи, когда прямая пересекает шар, касается его или не имеет с ним общих точек. Смотреть решение →