Теория
Теорема 1. Сумма противоположных углов вписанного четырёхугольника равна 180°.
Пусть в окружность с центром О вписан четырёхугольник ABCD (рис. 412). Требуется доказать, что ∠А + ∠С = 180° и ∠В + ∠D = 180°.
∠А, как вписанный в окружность О, измеряется 1/2\(\breve{BCD}\)....
Читать далее →
Задачи
Доказать, что всякая плоскость, проходящая через середины двух противоположных ребер тетраэдра, делит этот тетраэдр на две равновеликие части. Смотреть решение →
Через одну и ту же точку окружности проведены две хорды, равные а и b. Если соединить их концы, то получится треугольник площади S. Определить радиус окружности. Смотреть решение →
Доказать, что в любом треугольнике радиус описанного круга R и радиус вписанного круга r связаны с расстоянием l между центрами этих кругов соотношением
l 2 = R2 — 2Rr Смотреть решение →
Вычислить площадь трапеции, параллельные стороны которой содержат 16 см и 44 см, а непараллельные 17 см и 25 см. Смотреть решение →
Основанием пирамиды служит трапеция, в которой боковые стороны и меньшее основание равны между собой, большее основание равно а и тупой угол трапеции равен α. Все боковые ребра пирамиды образуют с плоскостью основания угол β. Определить объем пирамиды. Смотреть решение →
Основанием наклонного параллелепипеда служит ромб ABCD со стороной а и острым углом α. Ребро АА1 равно b и образует с ребрами АВ и AD угол φ. Определить объем параллелепипеда. Смотреть решение →
В основание конуса вписан квадрат, сторона которого равна а. Плоскость, проходящая через вершину конуса и сторону квадрата, дает в сечении с поверхностью конуса треугольник, угол при вершине которого α. Определить объем и полную поверхность конуса. Смотреть решение →
В правильной четырехугольной пирамиде центр описанного шара лежит на поверхности вписанного шара. Найти величину плоского угла при вершине пирамиды. Смотреть решение →
В конус с радиусом основания R и углом α между высотой и образующей вписан шар, касающийся основания и боковой поверхности конуса. Определите объем части конуса, расположенной над шаром. Смотреть решение →
Доказать, что биссектрисы внутренних углов параллелограмма в пересечении образуют прямоугольник, диагонали которого равны разности соседних сторон параллелограмма. Смотреть решение →