Теория
Каждая точка А плоскости характеризуется своими координатами (х, у). Они совпадают с координатами вектора 0А, выходящего из точки 0 - начала координат .
Пусть А и В - произвольные точки плоскости с координатами (х1 y1) и (х2,...
Читать далее →
Задачи
Ребро тетраэдра равно b. Через середину одного из ребер проведена плоскость параллельно двум непересекающимся ребрам. Определить площадь полученного сечения. Смотреть решение →
Доказать, что в любом треугольнике ABC расстояние от центра описанного круга до стороны треугольника BC вдвое меньше расстояния от точки пересечения высот до вершины А. Смотреть решение →
Доказать, что функция cos√x не является периодической (т. е. не существует такого постоянного числа Т =/= 0, чтобы при всех х было cos√x + T = cos√x ) Смотреть решение →
Через данную точку O пространства провести прямую, перпендикулярную к данной плоскости P Смотреть решение →
Решить уравнение tg x + tg(π/4 + x) = - 2 Смотреть решение →
В треугольнике даны сторона а, угол В и угол С. Определить объем тела, полученного от вращения треугольника около данной стороны. Смотреть решение →
В основании пирамиды ромб со стороной а. Две соседние грани составляют с плоскостью основания угол α, третья боковая грань составляет с плоскостью основания угол β(доказать, что и четвертая боковая грань наклонена к основанию под тем же углом). Высота пирамиды Н. Найти объем пирамиды и полную поверхность ее. Смотреть решение →
Основанием пирамиды служит квадрат ABCD со стороной a, боковое ребро SC перпендикулярно плоскости основания и равно b. М - точка на ребре AS. Точки М, В и D лежат на боковой поверхности прямого кругового конуса с вершиной в точке А, а точка С - в плоскости основания этого конуса. Определить площадь боковой поверхности конуса. Смотреть решение →
Точка О - общая вершина двух равных конусов, расположенных по одну сторону от плоскости α так, что только одна образующая каждого конуса (ОА для одного конуса и ОВ для другого) принадлежит плоскости α. Известно, что величина угла между высотами конусов равна β, а величина угла между высотой и образующей конуса равна φ, причем 2φ < β. Найти величину угла между образующей ОА и плоскостью основания другого конуса, которой принадлежит точка В. Смотреть решение →
Периметр равнобочной трапеции, описанной около круга, равен p. Найти радиус этого круга, если известно, что острый угол при основании трапеции равен α Смотреть решение →