Теория
Теорема 1. Против большей стороны в треугольнике лежит и больший угол. Пусть в ΔАВС сторона АВ больше стороны ВС. Докажем, что угол С, лежащий против большей стороны АВ, больше угла А, лежащего против меньшей стороны ВС (рис.). Отложим на стороне АВ от... Читать далее →


Задачи
  • Правильную четырехугольную призму требуется пересечь плоскостью так, чтобы в сечении получился ромб с острым углом α. Найти угол наклона секущей плоскости к основанию. Смотреть решение →
  • Угол при вершине осевого сечения конуса равен 2α, а сумма длин его высоты и образующей равна m. Найти объем и полную поверхность конуса. Смотреть решение →
  • Сторона правильного треугольника равна а. Из центра его радиусом а/3 описана окружность. Определить площадь части треугольника, лежащей вне этой окружности. Смотреть решение →
  • Прямая линия — касательная к боковой поверхности конуса — составляет с образующей, проходящей через точку касания, угол θ. Какой угол φ составляет эта прямая с плоскостью основания Р конуса, если образующие его наклонены к плоскости Р под углом αСмотреть решение →
  • Самая большая диагональ правильной шестиугольной призмы, имеющая длину d, составляет с боковым ребром призмы угол α. Определить объем призмы. Смотреть решение →
  • Шаровой сегмент шара радиуса R имеет полную поверхность S. Найти его высоту. Смотреть решение →
  • Вычислить угол между прямой и плоскостью: $$ а) \; \frac{x-1}{2}=\frac{y}{2}=\frac{z-7}{-1} \;\;и\;\; 4x+y+z+13=0 \\ б) \begin{cases} x = 2-3t\\y=1-t\\z=-4t\end{cases} \;\;и \;\;x+2y-z+1=0 \\ в) \begin{cases} 3x-2y+z+1=0\\4x-3y+4z=0\end{cases} \;\;и \;\;2x-y-2z+5=0 $$ Смотреть решение →
  • Доказать, что для объема произвольного тетраэдра V справедлива формула \(V = \frac{1}{6}abd sin\phi\), где а и b — два противоположных ребра тетраэдра, d — расстояние между ними, \(\phi\) — угол между ними. Смотреть решение →
  • В сектор круга радиуса R вписана окружность радиуса r . Хорда сектора равна 2а . Доказать, что

    1/r = 1/R + 1/a

     Смотреть решение →

  • Вычислите объём правильной треугольной пирамиды, если радиус описанной вокруг основания окружности равен √3, а высота пирамиды равна 4√3. Смотреть решение →