Тема: Геометрическое место точек
Теория
Задачи
  • На окружности даны две неподвижные точки А и В и подвижная точка M. На продолжении отрезка AM вне окружности откладывается отрезок MN=MB. Найти геометрическое место точек N. Смотреть решение →
  • Даны две параллельные прямые и точка О, лежащая между ними. Через эту точку проводят произвольную секущую, которая пересекает параллельные прямые в точках А и А'. Найти геометрическое место концов перпендикуляра к секущей, восставленного из точки А' и имеющего длину OA. Смотреть решение →
  • Найти геометрическое место точек, для которых сумма расстояний до двух данных прямых m и l равна длине a данного отрезка. Разобрать случаи пересекающихся и параллельных прямых. Смотреть решение →
  • Найти геометрическое место точек, для которых разность расстояний до двух данных прямых m и l равна отрезку данной длины. Разобрать случаи параллельных и пересекающихся прямых. Смотреть решение →
  • На плоскости даны два отрезка АВ и CD. Найти геометрическое место точек М, обладающих тем свойством, что сумма площадей треугольников АМВ и CMD равна некоторой постоянной a2Смотреть решение →
  • Даны окружность К и ее хорда АВ. Рассматриваются все треугольники, вписанные в окружность и имеющие основанием данную хорду. В каждом треугольнике взята точка пересечения высот. Найти геометрическое место этих точек. Смотреть решение →
  • Внутри данной окружности фиксирована точка А, не совпадающая с центром. Через А проведена произвольная хорда и в ее концах - касательные к окружности, пересекающиеся в точке М. Найти геометрическое место точек М. Смотреть решение →
  • Доказать, что геометрическое место точек М, расстояния которых до двух данных точек А и В находятся в данном отношении

    p/q=/= 1 есть окружность с центром на прямой АВ. Выразить диаметр этой окружности через длину a отрезка АВ. Исследовать также случай

    p/q= 1 Смотреть решение →

  • Даны отрезок АВ и на нем точка С. Каждая пара равных окружностей, одна из которых проходит через точки А и С, а другая - через точки С иВ, имеет, кроме С, еще одну общую точку D. Найти геометрическое место точек D. Смотреть решение →
  • Стороны деформирующегося многоугольника остаются соответственно параллельными заданным направлениям, в то время как все вершины, кроме одной, скользят по заданным прямым. Найти геометрическое место положений последней вершины. Смотреть решение →
  • 1 2 > >>