Теория
Рассмотрим два прямоугольных треугольника с острыми углами в 60° и 30° (рис. 364). Стороны второго треугольника по сравнению с первым уменьшены в два раза: \(\frac{AB}{A’B’}\) = 2; \(\frac{AC}{A’C’}\) = 2; \(\frac{BC}{B’C’}\) = 2. У этих треугольников углы попарно равны. Стороны, лежащие против равных... Читать далее →


Задачи
  • По объему V правильной n-угольной пирамиды, у которой сторона основания равна а, определить угол наклона бокового ребра пирамиды к плоскости основания. Смотреть решение →
  • В равнобедренной трапеции диагональ перпендикулярна к боковой стороне. Боковая сторона равна b и составляет с большим основанием угол α. Определить поверхность тела, образованного вращением трапеции вокруг большего основания. Смотреть решение →
  • Даны две стороны b и с треугольника и его площадь S = 2/5 . Найти третью сторону а треугольника.  Смотреть решение →
  • В правильный треугольник, сторона которого равна а, вписаны три равных круга, касательных друг к другу. Каждый из них касается двух сторон данного треугольника. Определить радиусы этих кругов. Смотреть решение →
  • В основание конуса вписан квадрат, сторона которого равна а. Плоскость, проходящая через вершину конуса и сторону квадрата, дает в сечении с поверхностью конуса треугольник, угол при вершине которого α. Определить объем и полную поверхность конуса. Смотреть решение →
  • В усеченный конус вписан шар радиуса r. Образующая конуса наклонена к плоскости основания под углом α. Найти объем конуса. Смотреть решение →
  • Определить объем правильной четырехугольной пирамиды, боковое ребро которой равно l , а двугранный угол между двумя смежными боковыми гранями равен βСмотреть решение →
  • Пирамида имеет в основании равнобедренный треугольник; боковые стороны этого основания равны а и образуют угол в 120°. Боковое ребро пирамиды, проходящее через вершину тупого угла, перпендикулярно к плоскости основания, а остальные два наклонены к ней под углом α. Определить площадь сечения пирамиды плоскостью, которая проходит через наибольшую сторону основания пирамиды и делит пополам ребро, перпендикулярное к основанию. Смотреть решение →
  • В равнобедренном треугольнике ABC угол при вершине В равен 20°. На боковых сторонах AB и BC взяты, соответственно, точки Q и P так, что ∠ACQ = 60°, a ∠CAP = 50°. Доказать, что ∠APQ = 80°.  Смотреть решение →
  • В основании прямой призмы лежит равнобедренный треугольник с боковой стороной, равной а, и углом при основании, равным α. Через основание треугольника, являющегося верхней гранью, и противоположную вершину нижнего основания проведена плоскость, образующая с плоскостью основания угол β. Определить боковую поверхность призмы и объем отсеченной четырехугольной пирамиды. Смотреть решение →