Теория
Теорема 1. Два треугольника подобны, если два угла одного треугольника соответственно равны двум углам другого. Пусть в треугольниках ABC и А’В’С ∠A = ∠А’ ∠В = ∠B’ (в подобных треугольниках вершины соответственно равных углов часто обозначают одинаковыми буквами). Доказать, что \(\Delta\)ABС \(\sim\)... Читать далее →


Задачи
  • Основание треугольника делится высотою на части в 36 см и 14 см. Перпендикулярно к основанию проведена прямая, делящая площадь данного треугольника пополам. На какие части эта прямая разбила основание треугольника?  Смотреть решение →
  • Секущая плоскость делит боковые ребра треугольной пирамиды в отношениях (считая от вершины) \( \frac{m_1}{n_1}, \frac{m_2}{n_2}, \frac{m_3}{n_3} \). В каком отношении эта плоскость разделит объем пирамиды? Смотреть решение →
  • Через сторону основания правильной треугольной пирамиды проведена плоскость перпендикулярно к противолежащему боковому ребру. Определить полную поверхность пирамиды, если указанная плоскость делит боковое ребро в отношении m : n и сторона основания равна qСмотреть решение →
  • Доказать, что если окружность касается изнутри трех сторон четырехугольника, четвертая сторона которого не пересекает окружности, то сумма четвертой и противоположной сторон меньше суммы двух других сторон четырехугольника.  Смотреть решение →
  • Три равных окружности пересекаются в одной точке. Вторая точка пересечения каких-либо двух из этих окружностей и центр третьей определяют проходящую через них прямую. Доказать, что получаемые три прямые пересекаются в одной точке. Смотреть решение →
  • Доказать, что если через точки пересечения двух окружностей провести две параллельные прямые, то наибольшие отрезки этих прямых, ограниченные окружностями, равны Смотреть решение →
  • В правильной усеченной четырехугольной пирамиде даны: диагональ d, двугранный угол αпри нижнем основании и высота H. Найти объем усеченной пирамиды. Смотреть решение →
  • Две окружности радиусов R и r находятся в положении внешнего касания. К этим окружностям проведена общая внешняя касательная, и в образовавшийся при этом криволинейный треугольник вписана окружность. Найти ее радиус. Смотреть решение →
  • Прямая, параллельная основанию треугольника, площадь которого равна S, отсекает от него треугольник с площадью, равной q. Определить площадь четырехугольника, три вершины которого совпадают с вершинами меньшего треугольника, а четвертая лежит на основании большего треугольника.  Смотреть решение →
  • На сторонах АВ, АС, ВС треугольника ABC, как на основаниях, построены три равнобедренных подобных треугольника АВР, ACQ, ВСR, два первых - вне данного треугольника, третий - по ту же сторону, что и данный треугольник. Доказать, что APRQ — параллелограмм (или что точки А, Р, R, Q лежат на одной прямой).  Смотреть решение →