Теория
Две прямые могут быть расположены в пространстве так, что через них нельзя провести плоскость.
Возьмём, например (черт. 4), две такие прямые AB и DE, из которых одна пересекает некоторую плоскость H, а другая лежит на ней, но не проходит через точку...
Читать далее →
Задачи
В основании прямой призмы лежит равнобочная трапеция с острым углом α, описанная около круга радиуса r. Через боковую сторону нижнего основания и противоположную вершину острого угла верхнего основания проведена плоскость, образующая с плоскостью основания угол α. Определить боковую поверхность призмы и площадь сечения. Смотреть решение →
В конус вписан шар, причем отношение их объемов равно k. Найти отношение объемов шаровых сегментов, отсекаемых от шара плоскостью, проходящей через линию касания шара с конусом. Смотреть решение →
В правильной шестиугольной пирамиде сторона основания равна 2√2 , а боковое ребро равно 2√5 . Найдите объём пирамиды Смотреть решение →
Основаниями правильной усеченной пирамиды служат квадраты со сторонами а и b (a > b). Боковые ребра наклонены к плоскости основания под углом α. Определить объем усеченной пирамиды и величину двугранных углов при сторонах оснований. Смотреть решение →
В правильной четырехугольной пирамиде площадь боковой поверхности равна 16√2, а площадь основания 4. Найдите высоту пирамиды. Смотреть решение →
Внутри треугольника АВС взята точка М и построены параллелограммы АМВМ1, ВМСВ2, СМАМ3. Доказать, что прямые АМ2, ВМ3, СМ1 пересекаются в одной точке. Смотреть решение →
Среди следующих пар прямых и плоскостей указать параллельные или перпендикулярные; в случае пересечения прямой и плоскости найти точку пересечения:
$$ а) \frac{x-1}{3}=\frac{y+2}{3}=\frac{z}{-5} \;\;и\;\; 7x-2y+3z-1=0 \\ б) \frac{x}{2}=\frac{y-1}{3}=\frac{z-1}{4} \;\;и\;\;x-y+z-3=0 \\ в) \begin{cases}6x+3y-2z-21=0\\6x+y+2z-31=0\end{cases} \;\;и\;\; 2x-6y-3z-91=0 $$ Смотреть решение →
Решить уравнение sin2 2х + sin2 x = 1 Смотреть решение →
В шар радиуса R вписан конус, боковая поверхность которого в k раз больше площади основания. Найти объем конуса. Смотреть решение →
Дан куб ABCDA1B1C1D1, М - центр грани АВВ1А1, N - точка на ребре B1C1, L - середина А1В1, К - основание перпендикуляра, опущенного из N на ВС1. В каком отношении точка N делит ребро В1С1, если ∠LMK = ∠MKN? Смотреть решение →