Теория
Теорема. Биссектриса любого угла треугольника (ABC) делит противоположную сторону на части (AD и CD), пропорциональные прилежащим сторонам треугольника.
Требуется доказать, что если ∠ABD = ∠DBC, то AD : DC = АВ : ВС.
Проведём СЕ || BD до пересечения в точке...
Читать далее →
Задачи
В треугольной пирамиде проводятся сечения, параллельные двум ее непересекающимся ребрам. Найти сечение с наибольшей площадью. Смотреть решение →
В основании пирамиды лежит прямоугольный треугольник, у которого один острый угол равен αи радиус вписанного круга равен r. Каждая из боковых граней образует с основанием угол α. Определить объем, боковую и полную поверхность пирамиды. Смотреть решение →
В трапеции средняя линия равна 4, а углы при одном из оснований равны 40° и 50°. Найти основания трапеции, если отрезок, соединяющий середины оснований, равен 1. Смотреть решение →
Дан параллелепипед ABCDA1B1C1D1.
Найти сумму векторов \( \overrightarrow{AB}, \overrightarrow{B_{1}C_{1}}, \overrightarrow{CC_{1}}, \overrightarrow{B_{1}A_{1}}, \overrightarrow{B_{1}B} \) Смотреть решение →
Правильная пятиугольная пирамида SABCDE пересечена плоскостью, проходящей через вершины А и С основания и середины ребер DS и ES. Найти площадь сечения, если q есть длина стороны основания пирамиды, a b — длина бокового ребра. Смотреть решение →
Вычислите объём правильной треугольной пирамиды, если радиус описанной вокруг основания окружности равен √3, а высота пирамиды равна 4√3. Смотреть решение →
В правильной n-угольной пирамиде площадь основания равна Q, а высота составляет с каждой из боковых граней угол φ. Определить боковую и полную поверхность пирамиды. Смотреть решение →
Доказать, что прямая, симметричная с медианой относительно биссектрисы внутреннего угла треугольника, делит противоположную сторону на части, пропорциональные квадратам прилежащих сторон. Смотреть решение →
Определить объем правильной четырехугольной призмы, если ее диагональ образует с боковой гранью угол α, а сторона основания равна b. Смотреть решение →
Вычислить объем правильной пирамиды высоты h, зная, что в ее основании лежит многоугольник, сумма внутренних углов которого равна пπ, а отношение боковой поверхности пирамиды к площади основания равно k. Смотреть решение →