Теория
Построим прямой угол и на его сторонах отложим равные отрезки АВ и АС (рис. 241).
Через точки В и С проведём прямые, параллельные сторонам АС и А В. Точку пересечения их обозначим через О. Мы получили четырёхугольник, в котором:
а) противоположные стороны...
Читать далее →
Задачи
Отрезки АВ и CD пересекаются в точке М так, что АМ = MD, СМ = МВ. Доказать, что точки А, В, С и D лежат на одной окружности Смотреть решение →
Найти геометрическое место оснований перпендикуляров, опущенных из данной точки пространства на прямые, лежащие в заданной плоскости и пересекающиеся в одной точке. Смотреть решение →
Доказать, что если все двугранные углы некоторой треугольной пирамиды равны, то все ребра этой пирамиды также равны. Смотреть решение →
Вычислить угол между прямой и плоскостью: $$ а) \; \frac{x-1}{2}=\frac{y}{2}=\frac{z-7}{-1} \;\;и\;\; 4x+y+z+13=0 \\ б) \begin{cases} x = 2-3t\\y=1-t\\z=-4t\end{cases} \;\;и \;\;x+2y-z+1=0 \\ в) \begin{cases} 3x-2y+z+1=0\\4x-3y+4z=0\end{cases} \;\;и \;\;2x-y-2z+5=0 $$ Смотреть решение →
В правильную четырехугольную пирамиду вписан куб так, что его четыре вершины находятся на боковых ребрах пирамиды, а остальные четыре — в плоскости ее основания. Определить ребро куба, если высота пирамиды равна H, а боковое ребро равно l. Смотреть решение →
Найти угол и расстояние между двумя скрещивающимися медианами двух боковых граней правильного тетраэдра с ребром a. Смотреть решение →
Диагональ прямоугольного параллелепипеда равна dи образует с двумя смежными боковыми гранями равные углы α. Определить объем параллелепипеда и угол, который образует с плоскостью основания плоскость, проведенная через концы трех ребер, выходящих из одной вершины. Смотреть решение →
Основанием пирамиды служит равнобедренный треугольник ABC, где АВ=АС. Высота пирамиды SO проходит через середину высоты AD основания. Через сторону ВС проведена плоскость перпендикулярно к боковому ребру AS, образующая с основанием угол α. Определить объем пирамиды, отсеченной от данной и имеющей с ней общую вершину S, если объем другой отсеченной части ее равен V. Смотреть решение →
В треугольнике даны стороны b и с и угол между ними α. Этот треугольник вращается около оси, которая проходит вне его через вершину угла α и равно наклонена к сторонам b и с. Определить объем тела вращения. Смотреть решение →
В пространстве рассматриваются два отрезка АВ и CD, не лежащих в одной плоскости. Пусть MN-отрезок, соединяющий их середины. Доказать, что \( \frac{AB + BC}{2} > MN \) (здесь AD, ВС и MN-длины соответствующих отрезков). Смотреть решение →