Тема: Прямоугольник
Теория
Задачи
  • Около данного прямоугольника описать новый прямоугольник, который имел бы заданную площадь m2. При каком m задача разрешима? Смотреть решение →
  • На стороне АВ прямоугольника ABCD найти такую точку Е, из которой стороны AD и DC были бы видны под равными углами.
    При каком соотношении между сторонами прямоугольника задача разрешима? Смотреть решение →
  • Доказать, что биссектрисы внутренних углов параллелограмма в пересечении образуют прямоугольник, диагонали которого равны разности соседних сторон параллелограмма.  Смотреть решение →
  • Стороны квадрата разделены в отношении m к n, причем к каждой вершине прилежит один большой и один малый отрезок. Последовательные точки деления соединены прямыми. Найти площадь полученного четырехугольника, если сторона данного квадрата равна а.  Смотреть решение →
  • В квадрат вписан другой квадрат, вершины которого лежат на сторонах первого, а стороны составляют со сторонами первого квадрата углы по 30o. Какую часть площади данного квадрата составляет площадь вписанного?  Смотреть решение →
  • В квадрат со стороной а вписан другой квадрат, вершины которого лежат на сторонах первого квадрата. Определить отрезки, на которые стороны первого квадрата рассекаются вершинами второго квадрата, если площадь второго квадрата равна 25/49 площади первого квадрата.  Смотреть решение →
  • В прямоугольник со сторонами 3 м и 4 м вписан другой прямоугольник, стороны которого относятся, как 1 : 3. Найти стороны этого прямоугольника.  Смотреть решение →
  • В ромб со стороной а и острым углом 60° вписана окружность. Определить площадь прямоугольника, вершины которого лежат в точках касания окружности со сторонами ромба. Смотреть решение →
  • Доказать, что прямые, соединяющие последовательно центры квадратов, построенных на сторонах параллелограмма и примыкающих к нему извне, образуют также квадрат. Смотреть решение →