Теория
Построение треугольников по одному или двум элементам Пусть требуется построить треугольник по данной стороне а. Так как об углах треугольника и о других его сторонах ничего не сказано, то можем построить сколько угодно различных треугольников, у которых одна сторона... Читать далее →


Задачи
  • На окружности даны две неподвижные точки А и В и подвижная точка M. На продолжении отрезка AM вне окружности откладывается отрезок MN=MB. Найти геометрическое место точек N. Смотреть решение →
  • В треугольную пирамиду, в основании которой — правильный треугольник со стороной а, вписан цилиндр так, что нижнее его основание находится на основании пирамиды, а верхнее касается всех боковых граней. Определить объем цилиндра и объем пирамиды, отсеченной плоскостью, проходящей через верхнее основание цилиндра, если известно, что высота цилиндра равна a/2, одно из боковых ребер пирамиды перпендикулярно к плоскости основания, а боковая грань наклонена к основанию под углом α (определить, при каких значениях а задача возможна). Смотреть решение →
  • Показать, что отрезки, соединяющие вершины некоторой треугольной пирамиды с центрами тяжести противолежащих граней, пересекаются в одной точке и делятся этой точкой в отношении 1:3. Смотреть решение →
  • В прямоугольном треугольнике гипотенуза с, а один из острых углов равен α. Определить радиус вписанного круга. Смотреть решение →
  • Доказать, что сумма квадратов расстояний какой-нибудь точки окружности до вершин правильного вписанного треугольника есть величина постоянная, не зависящая от положения точки на окружности.  Смотреть решение →
  • Может ли быть правильным треугольник, расстояния вершин которого до двух данных взаимно перпендикулярных прямых выражаются целыми числами?  Смотреть решение →
  • Доказать, что если через точки пересечения двух окружностей провести две параллельные прямые, то наибольшие отрезки этих прямых, ограниченные окружностями, равны Смотреть решение →
  • Угол при вершине осевого сечения конуса равен 2α, а сумма длин его высоты и образующей равна m. Найти объем и полную поверхность конуса. Смотреть решение →
  • В конус, радиус основания которого равен R и образующие наклонены к основанию под углом α/2, вписана прямая треугольная призма так, что ее нижнее основание лежит на основании конуса, а вершины верхнего — на боковой поверхности конуса. Определить боковую поверхность призмы, если в основании призмы лежит прямоугольный треугольник с острым углом α, а высота призмы равна радиусу сечения конуса плоскостью, проходящей через верхнее основание призмы. Смотреть решение →
  • Стороны квадрата разделены в отношении m к n, причем к каждой вершине прилежит один большой и один малый отрезок. Последовательные точки деления соединены прямыми. Найти площадь полученного четырехугольника, если сторона данного квадрата равна а.  Смотреть решение →