Теория
Теорема 1. Площадь сферы радиуса R вычисляется по формуле S = 4πR2 (1) Сфера радиуса R может быть получена вращением вокруг оси Ох полуокружности, заданной уравнением $$ y=\sqrt{R^2 - x^2}, \;\; x \in [- R; R] $$ Тогда по формуле для площади поверхности вращения... Читать далее →


Задачи
  • Правильная треугольная пирамида рассечена плоскостью, перпендикулярной к основанию и делящей две стороны основания пополам. Определить объем отсеченной пирамиды, если даны сторона а основания первоначальной пирамиды и двугранный угол αпри основании. Смотреть решение →
  • Двугранный угол при боковом ребре правильной шестиугольной пирамиды равен φ. Определить плоский угол при вершине пирамиды. Смотреть решение →
  • Внутри треугольника АВС взята точка М и построены параллелограммы АМВМ1, ВМСВ2, СМАМ3. Доказать, что прямые АМ2, ВМ3, СМ1 пересекаются в одной точке. Смотреть решение →
  • В правильную треугольную пирамиду вписан шар. Определить угол наклона боковой грани пирамиды к плоскости основания, зная, что отношение объема пирамиды к объему шара равно 27√3 /4πСмотреть решение →
  • В треугольнике АВС АL – биссектриса угла А.Через точку А проводят прямую перпендикулярно АL и из вершины В опускают на эту прямую перпендикуляр ВВ1. Доказать, что периметр треугольника ВВ1С больше периметра треугольника АВС. Смотреть решение →
  • В правильной n-угольной пирамиде площадь основания равна Q, а высота составляет с каждой из боковых граней угол φ. Определить боковую и полную поверхность пирамиды. Смотреть решение →
  • Внутри квадрата СО стороной а расположены четыре равных круга; каждый из них касается двух смежных сторон квадрата и двух кругов (из числа остальных трех). Найти площадь криволинейного четырехугольника, образованного дугами касающихся кругов (вершинами служат точки касания кругов). Смотреть решение →
  • Из точки сферы радиуса R проведены три равные хорды под углом α друг к другу. Определить длину этих хорд.  Смотреть решение →
  • В прямоугольном треугольнике АВС катеты ВС и АС продолжены за точку С так, что СА’ = СА и СВ’ = CВ. Точки А’ и В’ соединены прямой. Пусть СМ – медиана, СН – высоты треугольника АВС. Доказать, что: 1) продолжение СН’ медианы МС до пересечения с А’В’ – высота треугольника А’В’С; 2) продолжение СМ’ высоты НС до пересечения с А’В’ – медиана треугольника А’В’С. Смотреть решение →
  • Дана плоскость Р и две точки А и В вне ее. Через А и В проводятся всевозможные сферы, касающиеся плоскости Р. Найти геометрическое место точек касания. Смотреть решение →