Теория
Полученные формулы для cos (α ± β) используем теперь при выводе соответствующих формул для sin (α ± β). Для этого придется воспользоваться формулами приведения. Представим sin (α + β) в виде: sin (α + β) = cos[π/2 (α + β)]. После этого заметим,... Читать далее →


Задачи
  • Вычислить sin (2 arctg1/5 - arctg 5/12Смотреть решение →
  • Доказать, что функция cos√x не является периодической (т. е. не существует такого постоянного числа Т =/= 0, чтобы при всех х было cos√x + T = cos√x Смотреть решение →
  • В шар вписаны два одинаковых конуса, оси которых совпадают, а вершины находятся в противоположных концах диаметра шара. Найти отношение объема общей части этих двух конусов к объему шара, зная, что отношение высоты конуса h к радиусу шара R равно kСмотреть решение →
  • Дан параллелепипед ABCDA1B1C1D1.
    Найти сумму векторов \( \overrightarrow{AB}, \overrightarrow{B_{1}C_{1}}, \overrightarrow{CC_{1}}, \overrightarrow{B_{1}A_{1}}, \overrightarrow{B_{1}B} \) Смотреть решение →

  • В правильную n-угольную пирамиду со стороной основания а и боковым ребром b вписан шар. Найти его радиус. Смотреть решение →
  • Через вершину правильной треугольной пирамиды и середины двух сторон основания проведена плоскость. Определить площадь сечения и объемы частей данной пирамиды, на которые она разделена сечением, зная сторону а ее основания, и угол α, образованный сечением с основанием. Смотреть решение →
  • В параллелепипеде все его грани — равные ромбы со сторонами а и острыми углами α. Определить объем этого параллелепипеда. Смотреть решение →
  • Определить угол ромба, зная его площадь Q и площадь вписанного в него круга S. Смотреть решение →
  • Пусть a, b — катеты прямоугольного треугольника, с — гипотенуза, h — высота, опущенная из вершины прямого угла на гипотенузу. Доказать, что треугольник со сторонами h, c + h, a + b является прямоугольным.  Смотреть решение →
  • Найти объем треугольной пирамиды, если площади ее граней равны S0, S1, S2, S3, а двугранные углы, прилежащие к грани с площадью S0, равны между собой.  Смотреть решение →