Теория
Проекция точки и прямой на плоскость. Мы говорили ранее, что когда из одной точки проведены к плоскости перпендикуляр и наклонная, то проекцией этой наклонной на плоскость называется отрезок, соединяющий основание перпендикуляра с основанием наклонной. Дадим теперь более общее определение проекции. 1)... Читать далее →


Задачи
  • В основании прямой призмы лежит трапеция, вписанная в полукруг радиуса R так, что большее основание ее совпадает с диаметром, а меньшее стягивает дугу, равную 2α. Определить объем призмы, если диагональ грани, проходящей через боковую сторону основания, наклонена к основанию под углом αСмотреть решение →
  • Доказать, что всякая плоскость, проходящая через середины двух противоположных ребер тетраэдра, делит этот тетраэдр на две равновеликие части. Смотреть решение →
  • Правильную четырехугольную призму требуется пересечь плоскостью так, чтобы в сечении получился ромб с острым углом α. Найти угол наклона секущей плоскости к основанию. Смотреть решение →
  • Доказать, что в прямоугольном треугольнике сумма катетов равна сумме диаметров вписанной и описанной окружностей. Смотреть решение →
  • Решить уравнение sin2 2х + sin2 x = 1 Смотреть решение →
  • Через середины двух параллельных ребер куба, не лежащих на одной грани, проведена прямая, и куб повернут вокруг нее на 90°. Определить объем общей части исходного куба и повернутого, зная, что ребро куба имеет длину а.  Смотреть решение →
  • Определить угол между высотой и образующей конуса, боковая поверхность которого делится на две равновеликие части линией пересечения ее со сферической поверхностью, имеющей центр в вершине конуса и радиус, равный высоте конуса. Смотреть решение →
  • Основанием пирамиды SABCD является ромб с диагоналями AC = a, BD = b. Боковое ребро SA перпендикулярно плоскости основания и равно q. Через точку А и середину К ребра SC проведена плоскость, параллельная диагонали основания BD. Определить площадь сечения.  Смотреть решение →
  • В квадрат со стороной а вписан другой квадрат, вершины которого лежат на сторонах первого квадрата. Определить отрезки, на которые стороны первого квадрата рассекаются вершинами второго квадрата, если площадь второго квадрата равна 25/49 площади первого квадрата.  Смотреть решение →
  • Через точку Р, лежащую на данной окружности, и точку Q, лежащую на данной прямой, проводится произвольная окружность, пересекающая второй раз данную окружность в точке R, данную прямую-в точке S. Доказать, что получаемые этим построением всевозможные прямые RS пересекаются в одной точке, лежащей на данной окружности. Смотреть решение →