Теория
Рассмотрим две плоскости р1 и р2 с нормальными векторами n1 и n2. Угол φ между плоскостями р1 и р2 выражается через угол ψ = \(\widehat{(n_1; n_2)}\) следующим образом: если ψ < 90°, то φ = ψ (рис. 202, а); если... Читать далее →


Задачи
  • Доказать, что основания перпендикуляров, опущенных из произвольной точки окружности на стороны вписанного в нее треугольника, лежат на одной прямой. Смотреть решение →
  • Основание треугольника делится высотою на части в 36 см и 14 см. Перпендикулярно к основанию проведена прямая, делящая площадь данного треугольника пополам. На какие части эта прямая разбила основание треугольника?  Смотреть решение →
  • Шар радиуса R вписан в пирамиду, в основании которой лежит ромб с острым углом α. Боковые грани пирамиды наклонены к плоскости основания под углом ψ. Найти объем пирамиды. Смотреть решение →
  • В шаре радиуса R из точки его поверхности проведены три равные хорды под углом α друг к другу. Определить их длину. Смотреть решение →
  • Найти сумму \(\overrightarrow{KD}\) + \(\overrightarrow{MC}\) + \(\overrightarrow{DM}\) + \(\overrightarrow{CK}\) Смотреть решение →
  • Около окружности радиуса 2 описана равнобедренная трапеция ABCD площади 20. Найдите стороны этой трапеции. Смотреть решение →
  • В шар вписан конус, объем которого равен 1/4 объема шара. Найти объем шара, если высота конуса равна Н. Смотреть решение →
  • Правильная четырехугольная пирамида со стороной основания, равной а, и двугранным углом при основании, равным 2α, пересечена плоскостью, делящей пополам двугранный угол при основании. Найти площадь сечения.  Смотреть решение →
  • В основании призмы АВСА1В1С1 лежит равнобедренный треугольник ABC (AB=AC и ∠ABC = α). Вершина В1верхнего основания призмы проектируется в центр окружности радиуса r, вписанной в нижнее основание. Через сторону АС основания и вершину В1 проведена плоскость, наклоненная к плоскости основания под углом α. Найти полную поверхность отсеченной треугольной пирамиды АВСВ1 и объем призмы. Смотреть решение →
  • В шар вписаны два одинаковых конуса, оси которых совпадают, а вершины находятся в противоположных концах диаметра шара. Найти отношение объема общей части этих двух конусов к объему шара, зная, что отношение высоты конуса h к радиусу шара R равно kСмотреть решение →