Теория
Построим прямой угол А. Обозначим на его сторонах две произвольные точки В и С (рис. 235). Через точку В проведём прямую, параллельную АС, а через точку С проведём прямую, параллельную AB. Точку пересечения этих прямых обозначим буквой D (рис.236). Мы получили... Читать далее →


Задачи
  • В основании пирамиды лежит правильный треугольник, сторона которого равна а. Высота, опущенная из вершины пирамиды, проходит через одну из вершин основания. Боковая грань, проходящая через сторону основания, противолежащую этой вершине, наклонена к плоскости основания под углом φ. Определить боковую поверхность этой пирамиды, если за основание ее принять одну из равных боковых граней. Смотреть решение →
  • Окружность радиуса, равного высоте некоторого равнобедренного треугольника, катится по основанию этого треугольника. Доказать, что величина дуги, отсекаемой на окружности боковыми сторонами треугольника, остается при этом постоянной. Будет ли это предложение верно для неравнобедренного треугольника?  Смотреть решение →
  • Найти наибольшее и наименьшее значения функции

    у = 2 sin2 х + 4 cos2 х + 6 sin х cos х Смотреть решение →

  • Найти объем треугольной пирамиды, если площади ее граней равны S0, S1, S2, S3, а двугранные углы, прилежащие к грани с площадью S0, равны между собой.  Смотреть решение →
  • Определить угол между высотой и образующей конуса, боковая поверхность которого делится на две равновеликие части линией пересечения ее со сферической поверхностью, имеющей центр в вершине конуса и радиус, равный высоте конуса. Смотреть решение →
  • Внутри угла 60° расположена точка на расстояниях а и bот его сторон. Найти расстояние этой точки до вершины данного угла. Смотреть решение →
  • Найти двугранный угол между боковыми гранями правильной треугольной пирамиды, если двугранный угол, образуемый боковой гранью с основанием, равен αСмотреть решение →
  • Ребро куба равно а; АВ — его диагональ. Найти радиус сферы, касающейся трех граней, сходящихся в вершине А, и касающейся трех ребер, выходящих из вершины В. Найти также часть поверхности этой сферы, которая лежит вне куба. Смотреть решение →
  • Через одну из точек С дуги АВ окружности проведены две произвольные прямые, пересекающие хорду АВ в точках D и Е, а окружность в точках F и G. При каком положении точки С на АВ вокруг четырехугольника DEGF можно описать круг? Смотреть решение →
  • Дана плоскость Р и две точки А и В вне ее. Через А и В проводятся всевозможные сферы, касающиеся плоскости Р. Найти геометрическое место точек касания. Смотреть решение →