Теория
Угол ABC — вписанный угол. Он опирается на дугу АС, заключённую между его сторонами (рис. 330). Теорема. Вписанный угол измеряется половиной дуги, на которую он опирается. Это надо понимать так: вписанный угол содержит столько угловых градусов, минут и секунд, сколько дуговых градусов,... Читать далее →


Задачи
  • Расстояние между центрами двух окружностей, радиусы которых равны 17 см и 10 см, равно 21 cм. Определить расстояние центров от точки, в которой прямая центров пересекается с общей касательной окружностей.  Смотреть решение →
  • Внутри круга, радиус которого равен 13 см, дана точка M, отстоящая от центра на 5 см. Через точку M проведена хорда AB = 25 см. Определить длину отрезков, на которые хорда AB делится точкой M. Смотреть решение →
  • В треугольник вписан круг радиусом 4 см. Одна из сторон треугольника разделена точкой касания на части, равные 6 см и 8 см. Найти длины двух других сторон. Смотреть решение →
  • В равнобедренном треугольнике с основанием, равным 4 см, и высотой, равной 6 см, на боковой стороне, как на диаметре, построена полуокружность. Точки пересечения ее с основанием и боковой стороной соединены прямой. Определить площадь получившегося четырехугольника, вписанного в полукруг.  Смотреть решение →
  • В треугольнике ABC CD - медиана, угол C равен 90°, угол B равен 24°. Найдите угол ACD. Ответ дайте в градусах. Смотреть решение →
  • В основании пирамиды ромб со стороной а. Две соседние грани составляют с плоскостью основания угол α, третья боковая грань составляет с плоскостью основания угол β(доказать, что и четвертая боковая грань наклонена к основанию под тем же углом). Высота пирамиды Н. Найти объем пирамиды и полную поверхность ее. Смотреть решение →
  • Решить уравнение tg x + tg(π/4 + x) = - 2 Смотреть решение →
  • Пирамида имеет в основании равнобедренный треугольник; боковые стороны этого основания равны а и образуют угол в 120°. Боковое ребро пирамиды, проходящее через вершину тупого угла, перпендикулярно к плоскости основания, а остальные два наклонены к ней под углом α. Определить площадь сечения пирамиды плоскостью, которая проходит через наибольшую сторону основания пирамиды и делит пополам ребро, перпендикулярное к основанию. Смотреть решение →
  • В точке А, находящейся на расстоянии а от центра круглого биллиарда радиуса R, лежит упругий шарик, размерами которого можно пренебречь. В какую точку В борта нужно его направить, чтобы, дважды отразившись от борта, он снова вернулся в точку А?  Смотреть решение →
  • Основание треугольника делится высотою на части в 36 см и 14 см. Перпендикулярно к основанию проведена прямая, делящая площадь данного треугольника пополам. На какие части эта прямая разбила основание треугольника?  Смотреть решение →