Теория
Выведенные нами соотношения дают возможность решать прямоугольные треугольники, т.е. по некоторым данным элементам треугольника находить все остальные.Рассмотрим несколько примеров. 1. Даны гипотенуза прямоугольного треугольника и один из его острых углов. Найти катеты этого треугольника и второй острый угол. Пусть гипотенуза... Читать далее →


Задачи
  • В треугольнике даны стороны b и с и угол между ними α. Этот треугольник вращается около оси, которая проходит вне его через вершину угла α и равно наклонена к сторонам b и с. Определить объем тела вращения. Смотреть решение →
  • Среди следующих пар прямых и плоскостей указать параллельные или перпендикулярные; в случае пересечения прямой и плоскости найти точку пересечения: $$ а) \frac{x-1}{3}=\frac{y+2}{3}=\frac{z}{-5} \;\;и\;\; 7x-2y+3z-1=0 \\ б) \frac{x}{2}=\frac{y-1}{3}=\frac{z-1}{4} \;\;и\;\;x-y+z-3=0 \\ в) \begin{cases}6x+3y-2z-21=0\\6x+y+2z-31=0\end{cases} \;\;и\;\; 2x-6y-3z-91=0 $$ Смотреть решение →
  • В основании прямой призмы лежит прямоугольный треугольник с катетом а и противолежащим ему углом α. Через вершину прямого угла нижнего основания проведена плоскость, параллельная гипотенузе, под углом β= 90°— α к противолежащей боковой грани и пересекающая ее. Определить объем части призмы между ее основанием и сечением и боковую поверхность призмы, если известно, что боковая грань, проходящая через катет а, равновелика сечению призмы. Определить, при каком значении угла αплоскость сечения пересекает боковую грань, проходящую через гипотенузу основания. Смотреть решение →
  • Решить уравнение 1 + cos x + sin x = 0 Смотреть решение →
  • Апофема правильной шестиугольной пирамиды равна m. Двугранный угол при основании равен α. Найти полную поверхность пирамиды. Смотреть решение →
  • Из точки сферы радиуса R проведены три равные хорды под углом α друг к другу. Определить длину этих хорд.  Смотреть решение →
  • Около круга описана трапеция с углами при основании α и β. Найти отношение площади трапеции к площади круга. Смотреть решение →
  • В трапеции средняя линия равна 4, а углы при одном из оснований равны 40° и 50°. Найти основания трапеции, если отрезок, соединяющий середины оснований, равен 1. Смотреть решение →
  • От правильной четырехугольной призмы плоскостью, проходящей через диагональ нижнего основания и одну из вершин верхнего основания, отсечена пирамида с полной поверхностью S. Найти полную поверхность призмы, зная, что угол при вершине треугольника, получающегося в сечении, равен аСмотреть решение →
  • Две окружности радиусов R и r (R > r) имеют внутреннее касание. Найти радиус третьей окружности, касающейся первых двух окружностей и их общего диаметра. Смотреть решение →