Теория
Теорема 1. Против большей стороны в треугольнике лежит и больший угол. Пусть в ΔАВС сторона АВ больше стороны ВС. Докажем, что угол С, лежащий против большей стороны АВ, больше угла А, лежащего против меньшей стороны ВС (рис.). Отложим на стороне АВ от... Читать далее →


Задачи
  • Найти площадь равнобедренной трапеции, если ее высота равна h, а боковая сторона видна из центра описанной окружности под углом аСмотреть решение →
  • Через точку Р, лежащую на данной окружности, и точку Q, лежащую на данной прямой, проводится произвольная окружность, пересекающая второй раз данную окружность в точке R, данную прямую-в точке S. Доказать, что получаемые этим построением всевозможные прямые RS пересекаются в одной точке, лежащей на данной окружности. Смотреть решение →
  • В шар вписан конус, объем которого равен 1/4 объема шара. Найти объем шара, если высота конуса равна Н. Смотреть решение →
  • Диагональ прямоугольного параллелепипеда равна dи образует с двумя смежными боковыми гранями равные углы α. Определить объем параллелепипеда и угол, который образует с плоскостью основания плоскость, проведенная через концы трех ребер, выходящих из одной вершины. Смотреть решение →
  • В равносторонний треугольник ABC, сторона которого а, вписан другой равносторонний треугольник LMN, вершины которого лежат на сторонах первого треугольника и делят каждую из них в отношении 1:2. Определить площадь треугольника LMN.  Смотреть решение →
  • Через некоторую точку, взятую внутри треугольника, проведены три прямые, соответственно параллельные его сторонам. Эти прямые разделяют площадь треугольника на шесть частей, три из которых - треугольники с площадями, равными S1, S2, S3. Найти площадь данного треугольника. Смотреть решение →
  • Основанием прямой призмы служит равнобедренный треугольник, основание которого равно а и угол при основании равен α. Определить объем призмы, если ее боковая поверхность равна сумме площадей ее оснований. Смотреть решение →
  • На отрезке длины 2а + 2b и его частях длины 2а и 2b как на диаметрах построены полуокружности, лежащие по одну сторону от отрезка. Найти радиус окружности, касающейся трех построенных полуокружностей. Смотреть решение →
  • Основанием пирамиды служит прямоугольный треугольник, а высота ее проходит через точку пересечения гипотенузы с биссектрисой прямого угла основания. Боковое ребро, проходящее через вершину прямого угла, наклонено к плоскости основания под углом α. Определить объем пирамиды и углы наклона боковых граней к плоскости основания, если биссектриса прямого угла основания равна m и образует с гипотенузой угол 45° + αСмотреть решение →
  • Около круга радиуса 2 см описана равнобочная трапеция с площадью 20 см2. Найти стороны трапеции. Смотреть решение →