Теория
Определение. Плоскость, имеющая с шаровой поверхностью только одну общую точку, называется касательной плоскостью. Возможность существования такой плоскости доказывается следующей теоремой. Теорема. Плоскость (Р, черт. 140), перпендикулярная к радиусу (АО) в конце его, лежащем на поверхности шара, есть касательная плоскость. Возьмём на плоскости... Читать далее →


Задачи
  • Около круга радиуса R описан равнобедренный треугольник с углом 120°. Определить его стороны. Смотреть решение →
  • Найти геометрическое место точек, для которых сумма расстояний до двух данных прямых m и l равна длине a данного отрезка. Разобрать случаи пересекающихся и параллельных прямых. Смотреть решение →
  • Рассматривается функция

    f (х) = A cos х + В sin х,

    где A и В - некоторые постоянные.

    Доказать, что если f (х)обращается в нуль при двух значениях аргумента x1 и x2 таких, что

    x1 - x2 =/= kπ

    (k - целое число), то функция f (х) тождественно равна нулю Смотреть решение →

  • Основание треугольника делится высотою на части в 36 см и 14 см. Перпендикулярно к основанию проведена прямая, делящая площадь данного треугольника пополам. На какие части эта прямая разбила основание треугольника?  Смотреть решение →
  • В правильном тетраэдре SABC с ребром основания а проведены три плоскости, каждая из которых проходит через одну из вершин основания тетраэдра ABC и середины двух боковых ребер. Найти объем части тетраэдра, расположенной над всеми секущими плоскостями.  Смотреть решение →
  • На плоскости Р лежат три равных шара радиуса R, касающиеся друг друга. Прямой круговой конус расположен так, что его плоскость основания совпадает с Р, а данные шары касаются конуса и лежат вне его. Найти радиус основания конуса, если его высота задана и равна qR.  Смотреть решение →
  • Доказать, что основания перпендикуляров, опущенных из произвольной точки окружности на стороны вписанного в нее треугольника, лежат на одной прямой. Смотреть решение →
  • Две правильные n-угольные пирамиды с одинаковыми основаниями сложены этими основаниями. Найти радиус шара, вписанного внутрь получившегося многогранника, зная, что сторона общего основания пирамид равна а, а высоты пирамид равны h и H. Смотреть решение →
  • Решить уравнение 1 + cos x + sin x = 0 Смотреть решение →
  • Доказать, что если из концов диаметра круга провести две пересекающиеся хорды, то сумма произведений каждой хорды на ее отрезок от конца диаметра до точки пересечения есть величина постоянная.  Смотреть решение →