Теория
Шаровый секторОпределение. Тело, получаемое от вращения (черт. 146) кругового сектора (COD) вокруг диаметра (АВ), не пересекающего ограничивающую его дугу, называется шаровым сектором. Это тело ограничено боковыми поверхностями двух конусов и поверхностью шарового пояса; последняя называется основанием шарового сектора. Один из... Читать далее →


Задачи
  • Тупоугольный треугольник, острые углы которого α и β и меньшая высота равна h , вращается около стороны, противолежащей углу β. Найти поверхность тела вращения. Смотреть решение →
  • Показать, что если плоскость, проведенная через концы трех ребер параллелепипеда, исходящих из одной вершины, отсекает от параллелепипеда правильный тетраэдр, то параллелепипед можно пересечь плоскостью так, чтобы в сечении получился правильный шестиугольник. Смотреть решение →
  • Основанием пирамиды служит равнобедренный треугольник ABC, где АВ=АС. Высота пирамиды SO проходит через середину высоты AD основания. Через сторону ВС проведена плоскость перпендикулярно к боковому ребру AS, образующая с основанием угол α. Определить объем пирамиды, отсеченной от данной и имеющей с ней общую вершину S, если объем другой отсеченной части ее равен V. Смотреть решение →
  • Доказать, что во всяком треугольнике большей стороне соответствует меньшая биссектриса. Смотреть решение →
  • Определить объем правильной четырехугольной пирамиды, боковое ребро которой равно l , а двугранный угол между двумя смежными боковыми гранями равен βСмотреть решение →
  • Найти отношение площади треугольника ABC к площади другого треугольника, стороны которого равны медианам треугольника ABC.  Смотреть решение →
  • Катеты прямоугольного треугольника равны b и с. Найти длину биссектрисы прямого угла.  Смотреть решение →
  • Через данную прямую (a) провести плоскость, параллельную другой данной прямой (b) Смотреть решение →
  • Через одну и ту же точку окружности проведены две хорды, равные а и b. Если соединить их концы, то получится треугольник площади S. Определить радиус окружности. Смотреть решение →
  • Доказать, что прямые, соединяющие последовательно центры квадратов, построенных на сторонах параллелограмма и примыкающих к нему извне, образуют также квадрат. Смотреть решение →