Теория
Полученные формулы для cos (α ± β) используем теперь при выводе соответствующих формул для sin (α ± β). Для этого придется воспользоваться формулами приведения. Представим sin (α + β) в виде: sin (α + β) = cos[π/2 (α + β)]. После этого заметим,... Читать далее →


Задачи
  • Две правильные n-угольные пирамиды с одинаковыми основаниями сложены этими основаниями. Найти радиус шара, вписанного внутрь получившегося многогранника, зная, что сторона общего основания пирамид равна а, а высоты пирамид равны h и H. Смотреть решение →
  • Доказать, что для любой замкнутой не пересекающей себя ломаной линии в плоскости существует круг, радиус которого составляет 1/4 периметра ломаной линии и вне которого нет ни одной точки ломаной. Смотреть решение →
  • В параллелограмме проведены биссектрисы внутренних углов до взаимного пересечения. Доказать, что четырехугольник, образованный этими биссектрисами, - прямоугольник. Смотреть решение →
  • В конус вписан шар. Поверхность шара относится к площади основания конуса как 4:3. Найти угол при вершине конуса.  Смотреть решение →
  • В правильную четырехугольную пирамиду вписан полушар так, что его плоская грань параллельна основанию пирамиды, а шаровая поверхность касается его. Определить полную поверхность пирамиды, если боковые ее грани образуют с основанием угол αи радиус шара равен rСмотреть решение →
  • Вычислить sin (2 arctg1/5 - arctg 5/12Смотреть решение →
  • На столе, касаясь друг друга, лежат четыре шара одинакового радиуса r. Сверху в ямку, образованную ими, положен пятый шар того же радиуса. Найти расстояние от верхней точки пятого шара до плоскости стола. Смотреть решение →
  • Найти геометрическое место точек, из которых можно провести к данному шару радиуса R три касательные, образующие трехгранный угол с тремя прямыми плоскими углами. Смотреть решение →
  • Через произвольную точку О, взятую внутри треугольника ABC, проведены прямые DE, FK, MN, параллельные, соответственно, AB, АС, BC, причем F и M лежат на AB, E и К - на BC, N и D - на АС, Доказать, что

    \(\frac{AF}{AB} + \frac{BE}{BC} + \frac{CN}{CA} = 1\)

     Смотреть решение →

  • В правильном тетраэдре SABC с ребром основания а проведены три плоскости, каждая из которых проходит через одну из вершин основания тетраэдра ABC и середины двух боковых ребер. Найти объем части тетраэдра, расположенной над всеми секущими плоскостями.  Смотреть решение →