Теория
Теорема 1. Сумма противоположных углов вписанного четырёхугольника равна 180°. Пусть в окружность с центром О вписан четырёхугольник ABCD (рис. 412). Требуется доказать, что ∠А + ∠С = 180° и ∠В + ∠D = 180°. ∠А, как вписанный в окружность О, измеряется 1/2\(\breve{BCD}\).... Читать далее →


Задачи
  • Доказать, что всякая плоскость, проходящая через середины двух противоположных ребер тетраэдра, делит этот тетраэдр на две равновеликие части. Смотреть решение →
  • В равнобедренном треугольнике основание равно 30 см, а высота 20 см. Определить высоту, опущенную на боковую сторону.  Смотреть решение →
  • Боковая поверхность конуса равна S, а полная поверхность — Р. Определить угол между высотой и образующей. Смотреть решение →
  • Через вершину конуса проведена плоскость под углом α к основанию конуса. Эта плоскость пересекает основание по хорде АВ длины a , стягивающей дугу основания конуса, которой соответствует центральный угол β. Найти объем конуса. Смотреть решение →
  • Ромб с большей диагональю d и острым углом γвращается вокруг оси, проходящей вне его через вершину ромба и перпендикулярной к большей диагонали его. Определить объем тела вращения. Смотреть решение →
  • Доказать, что сумма квадратов длин двух взаимно перпендикулярных пересекающихся хорд окружности больше квадрата ее диаметра, а сумма квадратов отрезков, на которые точка пересечения делит хорды, равна квадрату диаметра.  Смотреть решение →
  • Определить объем правильной четырехугольной пирамиды, боковое ребро которой равно l , а двугранный угол между двумя смежными боковыми гранями равен βСмотреть решение →
  • Доказать, что геометрическое место точек М, расстояния которых до двух данных точек А и В находятся в данном отношении

    p/q=/= 1 есть окружность с центром на прямой АВ. Выразить диаметр этой окружности через длину a отрезка АВ. Исследовать также случай

    p/q= 1 Смотреть решение →

  • В основании прямой призмы лежит равнобедренный треугольник с боковой стороной, равной а, и углом при основании, равным α. Через основание треугольника, являющегося верхней гранью, и противоположную вершину нижнего основания проведена плоскость, образующая с плоскостью основания угол β. Определить боковую поверхность призмы и объем отсеченной четырехугольной пирамиды. Смотреть решение →
  • Дан равнобедренный треугольник с основанием 2а и высотой h. В него вписана окружность, и к ней проведена касательная, параллельная основанию. Найти радиус окружности и длину отрезка касательной, заключенного между сторонами треугольника.  Смотреть решение →