Теория
Теорема. Сумма внутренних углов треугольника равна двум прямым углам. Возьмём какой-нибудь треугольник AВС (рис. 208). Обозначим его внутренние углы цифрами 1, 2 и 3. Докажем, что ∠1 + ∠2 + ∠3 = 180°. Проведём через какую-нибудь вершину треугольника, например В, прямую МN параллельно... Читать далее →


Задачи
  • В квадрат вписан другой квадрат, вершины которого лежат на сторонах первого, а стороны составляют со сторонами первого квадрата углы по 30o. Какую часть площади данного квадрата составляет площадь вписанного?  Смотреть решение →
  • Найти отношение объема правильной n-угольной пирамиды к объему вписанного в нее шара, зная, что окружности, описанные около основания и боковых граней пирамиды, равны между собой. Смотреть решение →
  • В конус вписан шар, причем отношение их объемов равно k. Найти отношение объемов шаровых сегментов, отсекаемых от шара плоскостью, проходящей через линию касания шара с конусом. Смотреть решение →
  • Найти геометрическое место точек, для которых разность расстояний до двух данных прямых m и l равна отрезку данной длины. Разобрать случаи параллельных и пересекающихся прямых. Смотреть решение →
  • К окружности проведены две касательные, которые пересекают в точках А и В прямую, проходящую через центр окружности, и образуют с этой прямой равные углы. Доказать, что любая (подвижная) касательная отсекает на данных (неподвижных) касательных отрезки АС и BD, произведение которых постоянно.  Смотреть решение →
  • Найти поверхность правильной n-угольной пирамиды объема V, если радиус круга, вписанного в основание, равен радиусу круга, описанного вокруг сечения, параллельного основанию и отстоящего от основания на расстоянии h.  Смотреть решение →
  • Доказать, что если окружность касается изнутри трех сторон четырехугольника и пересекает четвертую сторону, то сумма этой последней и противоположной стороны больше суммы двух других сторон четырехугольника.  Смотреть решение →
  • В правильной четырехугольной призме проведены два параллельных сечения: одно проходит через середины двух смежных сторон основания и середину оси, другое делит ось в отношении 1:3. Зная, что площадь первого сечения равна S, найти площадь второго  Смотреть решение →
  • Некоторая точка О плоскости соединена с вершинами параллелограмма ABCD. Доказать, что площадь треугольника АОС равна сумме или разности площадей двух смежных треугольников, образованных двумя из прямых ОА, ОВ, ОС, OD и соответствующей стороной параллелограмма. Разобрать случаи, когда точка О находится внутри и вне параллелограмма.  Смотреть решение →
  • Две правильные n-угольные пирамиды с одинаковыми основаниями, но разными высотами, сложены этими основаниями, и около получившегося многогранника описан шар радиуса R. Найти высоты пирамид, зная, что сторона основания равна а. При каком соотношении между а и R задача разрешима? Смотреть решение →