Средняя линия трапеции

Четырёхугольник, у которого две противоположные стороны параллельны, а другие две - не параллельны, называется трапецией.

На чертеже 252 у четырёхугольника АВDС АВ || СD, AC ||BD. АВDС — трапеция.

Параллельные стороны трапеции называются её основаниями; АВ и СD — основания трапеции. Остальные две стороны называются боковыми сторонами трапеции; АС и ВD — боковые стороны трапеции.

Если боковые стороны равны, то трапеция называется равнобедренной.

Трапеция АВОМ равнобедренная, так как АМ=ВО (рис. 253).

Трапеция, у которой одна из боковых сторон перпендикулярна к основанию, называется прямоугольной (рис. 254).

Средней линией трапеции называется отрезок, соединяющий середины боковых сторон трапеции.

Теорема. Средняя линия трапеции параллельна каждому из ее оснований и равна их полусумме.

Дано: ОС — средняя линия трапеции АВDК, т. е. ОК = ОА и ВС = СD (рис. 255).

Надо доказать:

1) ОС || КD и ОС || АВ;

2) OC = \(\frac{KD + AB}{2}\)

Доказательство. Через точки А и С проведём прямую, пересекающую продолжение основания КD в некоторой точке Е.

В треугольниках АBС и DСЕ:

ВС = СD — по условию;

∠1 = ∠2, как вертикальные,

∠4 = ∠3, как внутренние накрест лежащие при параллельных АВ и KЕ и секущей ВD. Следовательно, \(\Delta\)АBС = \(\Delta\)DСЕ.

Отсюда АС = СЕ, т.е. ОС является средней линией треугольника КАЕ. Следовательно:

1) ОС || КЕ и, значит, ОС || КD и ОС || AВ;

2) OC = \(\frac{KE}{2} = \frac{KD + DE}{2}\), но DЕ = АВ (из равенства треугольников АBС и DСЕ), поэтому отрезок DЕ можно заменить равным ему отрезком АВ. Тогда получим:

OC = \(\frac{KD + AB}{2}\)

Теорема доказана.



Свойства трапеции, которые часто используются при решении задач:

  1. Диагонали трапеции разбивают её начетыре треугольника с общей вершиной. Площади треугольников, прилежащие к боковым сторонам, равны.


  2. В любой трапеции середины оснований, точка пересечения диагоналей и точка пересечения прямых, на которой лежат боковые стороны, лежат на одной прямой (точки М, N, О и К).


  3. В равнобокой трапеции углы при основании равны.


  4. В равнобокой трапеции прямая, проходящая через середины оснований, перпендикулярна основаниям и является осью симметрии этой трапеции


  5. В равнобокой трапеции диагонали равны.


  6. В равнобокой трапеции высота, опущенная на большее основание из конца меньшего основания, делит его на два отрезка, один из которых равен полуразности оснований, а другой - их полусумме.


  7. Во всякой трапеции серединам боковых сторон и середины диагоналей лежат на одной прямой.


  8. Во всякой трапеции отрезок, соединяющий середины диагоналей, параллелен основаниям и равен полуразности оснований.


  9. Во всякой трапеции сумма квадратов диагоналей равна сумме квадратов боковых сторон и удвоенного произведения оснований.


  10. Трапецию можно вписать в окружность тогда и только тогда, когда она равнобокая.


  11. Трапецию можно описать около окружности тогда и только тогда, когда сумма оснований равна сумме боковых сторон.



Другие материалы по теме: Трапеция

  • Площадь трапеции